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Abstract: 20 

An operational multi-model forecasting system for air quality has been developed to provide air 21 
quality services for urban areas of China. The initial forecasting system included seven state-of-the-22 
art computational models developed and executed in Europe and China (CHIMERE, IFS, EMEP 23 
MSC-W, WRF-Chem-MPIM, WRF-Chem-SMS, LOTOS-EUROS and SILAMtest). Several other 24 
models joined the prediction system recently, but are not considered in the present analysis. In 25 
addition to the individual models, a simple multi-model ensemble was constructed by deriving 26 
statistical quantities such as the median and the mean of the predicted concentrations. 27 
  28 
The prediction system provides daily forecasts and observational data of surface ozone, nitrogen 29 
dioxides and particulate matter for the 37 largest urban agglomerations in China (population higher 30 
than 3 million in 2010). These individual forecasts as well as the multi-model ensemble predictions 31 
for the next 72 hours are displayed as hourly outputs on a publicly accessible web site 32 
(www.marcopolo-panda.eu). 33 
  34 
In this paper, the performance of the predictions system (individual models and the multi-model 35 
ensemble) for the first operational year (April 2016 until June 2017) has been analysed through 36 
statistical indicators using the surface observational data reported at Chinese national monitoring 37 
stations. This evaluation aims to investigate a) the seasonal behavior, b) the geographical 38 
distribution and c) diurnal variations of the ensemble and model skills. Statistical indicators show 39 
that the ensemble product usually provides the best performance compared to the individual model 40 
forecasts. The ensemble product is robust even if occasionally some individual model results are 41 
missing.  42 
 43 
Overall and in spite of some discrepancies, the air quality forecasting system is well suited for the 44 
prediction of air pollution events and has the ability to provide alert warning (binary prediction) of 45 
air pollution events if bias corrections are applied to improve the ozone predictions.  46 
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1. Introduction 47 

 48 
With the rapid development of its economy, China has been experiencing repeated intense air 49 
pollution episodes (e.g. Guo et al., 2014, Huang et al., 2014, Wang et al., 2014) with a wide range 50 
of health effects (Kampa and Castanas 2008; Wu et al., 2012; Hamra et al. 2015; Boynard et al., 51 
2014; WHO, 2018) and serious consequences on ecosystems (Fowler et al., 2008, Ashmore, 2005; 52 
Leisner et al., 2012; Sinha et al., 2015) and on climate (Sitch et al. 2007; Brasseur et al., 1999; 53 
Akimoto, 2003). High concentrations of particulate matter often cover a large area of eastern China 54 
during winter when air remains stagnant for several days and chemical compounds emitted by 55 
power plants, industrial complexes, traffic and domestic infrastructures remain trapped near the 56 
surface (e.g. Wang et al., 2014; Zhao et al., 2013). During summer, photochemical processes 57 
convert nitrogen oxides (NOX) and volatile organic compounds (VOCs) into tropospheric ozone 58 
(O3) (e.g. Xu et al., 2008, Sun et al., 2016). 59 
 60 
Long-term solutions to mitigate air pollution require a fundamental transformation of the energy 61 
system, which may require decades to be fully implemented. Short-term actions to avoid severe air 62 
pollution episodes, however, can be put in place immediately if such episodes can be reliably 63 
predicted a few days prior to their occurrence. Comprehensive air quality models that capture 64 
meteorological, chemical and physical processes in the troposphere and predict the fate of air 65 
pollutants are key tools to forecast the likelihood of air pollution episodes and hence to inform the 66 
authorities. 67 
 68 
Within the EU projects MarcoPolo and Panda, that include European as well as Chinese partner 69 
organizations, an operational multi-model forecasting system for air quality including a number of 70 
different chemical transport models has been developed, and is providing daily forecasts of ozone, 71 
nitrogen oxides, and particulate matter for the 37 largest urban areas of China (population higher 72 
than 3 million in 2010). These individual forecasts as well as the mean and median concentrations 73 
for the next 3 days are posted on a dedicated website (www.marcopolo-panda.eu/forecast) together 74 
with the hourly observational data from local measurements reported by the Chinese monitoring 75 
network of the China National Environmental Monitoring Centre (CNEMC) (data available at 76 
www.pm25.in). This operational air quality analysis and forecasting system is presented in detail in 77 
a companion paper (Brasseur et al, 2018), where the individual models contributing to the 78 
MarcoPolo-Panda prediction system are described, and details about the individual models and their 79 
individual settings are provided. Information about selected parametrization options for the physical 80 
processes, including boundary layer, radiation, convection and surface processes, and about the 81 
emissions adopted in MarcoPolo-Panda prediction system are also provided. 82 
 83 
In the present study, we evaluate the prediction system of the MarcoPolo and Panda projects that 84 
have been in operation for more than one year. We concentrate on the period April 2016 to June 85 
2017 and  analyse the model forecasts (7 individual models and the ensemble median) and 86 
observational data for 34 cities (covered by most of the models, depending on the extent of the 87 
domains, for two models only 31 and 32 cities).  88 
 89 
We evaluate the performance of the individual models involved in the present study, and to examine 90 
the performance of the overall forecasting system by comparing the predicted surface 91 
concentrations to values reported by the Chinese air pollution monitoring network. Section 2 of the 92 
paper provides a brief description of the forecasting system, while Section 3 investigates the 93 
performance of the system using different statistical indicators including the mean bias (BIAS), the 94 
root mean square error (RMSE), the modified normalised bias (MNBIAS), the fractional gross error 95 
(FGE) and the correlation coefficient. We derive in particular (a) statistical indicators for each 96 
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model over the time of the year (on a monthly basis) in order to analyse seasonal characteristics, (b) 97 
the geographical distribution of the statistical indicators for the ensemble median in order to derive 98 
regional characteristics and issues, (c) the statistical indicators of all models and of the ensemble 99 
median over the time of the day (considering all model-observation pairs of all cities and for the 100 
whole time period) and for a specific city (Beijing) together with the diurnal variation of the 101 
pollutants during the whole time period. In Section 4, we assess the impacts of missing forecasts 102 
from one or more models on the production of the ensemble. As the prediction system intends to 103 
provide warning of air pollution episodes to the general public, the system performance has been 104 
evaluated regarding its ability to predict the exceedence of air quality thresholds (binary prediction 105 
of pollution events). This analysis is presented in Section 5. We show that the application of bias 106 
correction to the models improves the forecasting skills of binary ozone predictions. We conclude 107 
with a summary and outlook in Section 6. 108 
 109 
 110 

2. Description of the Analysis and Forecasting System 111 

Within the EU projects MarcoPolo and Panda, a number of chemistry transport models have been 112 
applied to provide daily air quality forecasts for a selection of 37 large Chinese agglomerations 113 
(population over 3 million, 2010 census). Initially, seven models, CHIMERE (Royal Netherlands 114 
Meteorological Institute (KNMI)), IFS (European Centre for Medium Range Weather Forecast 115 
(ECMWF)), WRF-chem-SMS (Shanghai Meteorological Service (SMS)), SILAMtest (Finish 116 
Meteorological Institute (FMI)), WRF-chem-MPIM (Max Planck Institute for Meteorology 117 
(MPIM) in Hamburg), EMEP MSC-W (hereafter referred to as ‘EMEP’, Norwegian Meteorological 118 
Institute (MET Norway)) and LOTOS-EUROS (The Netherlands Organisation for Applied 119 
Scientific Research (TNO)) were providing daily forecasts every day at 0:00 UTC for the next 72 120 
hours (three days) for NO2, O3, PM10 and PM2.5 (see Figure 1). WRF-CMAQ and WRMS-121 
CMAQ, both used by Chinese institutions (Nanjing University and SMS), have joined recently the 122 
prediction system, but are not considered in the present analysis. 123 
 124 
We should note that the models considered in the present study may have significantly evolved 125 
since the present analysis was performed. This is the case, for example, of the SILAM model 126 
developed by the Finish Meteorological Institute, whose configuration was still in a test mode, and 127 
is therefore referred to as SILAMtest. 128 
  129 
The individual models are executed independently on the computing systems available in each 130 
partner institution. The surface concentrations of the key chemical species are extracted locally 131 
from the model outputs and forwarded to a central database operated by the Royal Netherlands 132 
Meteorological Institute (KNMI). 133 
 134 
Hourly predictions of surface concentrations (expressed in µg/m3), are provided by the models as 135 
grid values, which are bi-linearly interpolated to city center coordinates. The average for the data 136 
provided by the urban network (usually around 5-12 stations), is posted together with the 137 
corresponding standard deviation and the number of contributing stations.  In the present analysis, 138 
we consider only the model simulations corresponding to 34 cities, since the cities of Ürümqi (most 139 
western, only covered by three models), Changchun and Harbin (most northern cities), are located 140 
outside of the domains covered by most individual models, which are indicated in the companion 141 
paper (Brasseur et al., 2018). 142 
 143 
In addition to the forecasts provided by the individual participating models, a multi-model ensemble 144 
was constructed from which the median and the mean were derived. To process the ensemble 145 
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median, all seven individual models are first interpolated to a common horizontal grid. For each 146 
grid point, the ensemble model is calculated as the median value of the individual model forecasts. 147 
The median is relatively insensitive to outliers in the forecasts. The method is also less vulnerable to 148 
occasionally missing data from individual models, as the minimum number of model results needed 149 
to calculate a meaningful ensemble mean or median is almost always available. This will be 150 
discussed in detail in Section 4. The multi-model approach also provides more accurate forecasts 151 
and thus reduces the underlying uncertainties (as will be shown in the following section). More 152 
advanced methods, e.g. based on individual model skills, are discussed in the literature (e.g. 153 
Galmarini et al, 2013). They are significantly more costly from a computational point of view and 154 
therefore not well suited for daily operations. 155 

 156 

Figure 1: Map of the 34 cities/urban clusters (population over 3 million (2010 census)) with 
available data (observational and model ensembles), used in this evaluation. 

3. Evaluation of the performance of the system 157 

 158 
The evaluation of the performance of a forecasting system is a necessary step for assessing the 159 
quality of the predictions and demonstrating its usefulness. It also provides important information 160 
that can lead to the improvement of the forecasting system and to further model development. The 161 
comparison between model output and in situ measurements is not straightforward because of the 162 
different nature of the respective quantities: air quality models provide volume averaged quantities 163 
over each model grid cell and time averages over the modeling time step. Observations are available 164 
at fixed measurement sites and at a fixed time. Further, they are influenced by local processes that 165 
are not necessarily well captured by relatively coarse models. Thus, the representativeness of the 166 
observational site is not always guaranteed.  167 
 168 
The MarcoPolo-Panda forecasting and analysis system uses the surface observations available at the 169 
web site www.pm25.in for 37 Chinese cities. For a given city, the observational data considered for 170 
the evaluation of the model consist of an average of the measurements made at the different stations 171 
of the urban network, usually 5 – 12 stations, which are aggregated to one value for the whole city. 172 
The model fields are bilinearly interpolated to the city center coordinates.  173 
 174 
The mean bias 175 
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 193 
are used to measure the system performance. Here 
̄ and 
̄ are the mean values of the model 194 
forecast and observed values, and "� and "� are the corresponding standard deviations. 195 
 196 
The evaluation presented here aims to investigate a) the statistical indicators for each model over 197 
the time of the year (on a monthly basis) so that the seasonal features can be characterized and 198 
related issues of individual models can be identified (Section 3.1); b) the geographical distribution 199 
of the statistical indicators of the ensemble median to highlight regional characteristics and related 200 
issues (Section 3.2); c) statistical indicators of all models and the ensemble median over the time of 201 
the day (considering all model-observation pairs of all cities and for the whole time period) and for 202 
a specific city (Beijing) together with the diurnal variation of the pollution species over the whole 203 
time period (Section 3.3). 204 
 205 
 206 

3.1 Evaluation of the Seasonal Behavior of the Models 207 

 208 
We start our evaluation of the multi-model prediction system by examining the seasonal behavior of 209 
the predicted concentrations of key chemical species. The statistical indicators mentioned above 210 
have been calculated separately for each month from April 2016 to June 2017 and for the entire 211 
period during which the forecasting system was operational. Due to storage issues, only the 212 
predictions for the first 24 hours (0-23h) were saved while the predictions from 24h-72h were not 213 
retained and not analyzed in this work. 214 
 215 
 216 
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Figure 2 shows the RMSE, BIAS, MNBIAS and FGE of NO2 (left panel) and O3 (right panel) for 217 
each of the seven individual models included in the system and for the model ensemble median, for 218 
each individual month between April 2016 and June 2017. The same results are also provided for 219 
the whole period (“all”). It can be seen, that there is a wide spread of the results produced by the 220 
seven models.  The individual models are continuously improving during the first months because 221 
many changes have been applied by the different modeling groups in order to improve their 222 
individual predictions. In the case of NO2, most individual models slightly overestimate the 223 
concentrations compared to observations. In the EMEP model, it may be explained by the larger 224 
nitric oxide emissions used in comparison with the other models (Brasseur et al., 2018).  This 225 
results in a positive BIAS and MNBIAS for most models and the ensemble median. The RMSE of 226 
the model ensemble is highest in July/August/September 2016 and remains relatively constant after 227 
October 2016. It can be seen, that the median of the model ensemble has the lowest RMSE for NO2, 228 
the smallest BIAS and MNBIAS (slightly positive) and the lowest FGE. This demonstrates the 229 
advantage of adopting a model ensemble rather than the prediction provided by individual models. 230 
 231 
Most models underestimate O3 (likely as a result of the overestimated NO2 because the O3  232 
production is not NOx-limited) during the whole period under consideration. For O3, the CHIMERE 233 
model shows slightly better performance (lowest RMSE) than the model ensemble median. The 234 
median BIAS for O3 is relatively constant (slightly negative). For this particular species, the model 235 
ensemble median does not provide the best results regarding the BIAS. In fact, in this case, the 236 
model LOTOS-EUROS gives the best performance for ozone, Interestingly, this particular model 237 
has the largest negative BIAS for NO2. The median BIAS of O3 remains relatively constant during 238 
the period, while the MNBIAS exhibits higher negative values during the winter months, as a result 239 
of the relative low O3 concentrations during winter time. 240 
 241 
As stated above, the MarcoPolo-Panda prediction system has the tendency to overestimate surface 242 
NO2, which leads to O3  titration especially during night time. The emission injection height is also 243 
a relevant factor here since it can largely influence the results in the planetary boundary layer. 244 
During night-time, emissions from stacks may be take place above the mixing layer and explain 245 
model-data discrepancies since the models often assume that the injection of primary pollutants 246 
takes place in the first layer above the surface.  247 
 248 
 249 
Anthropogenic emissions of primary pollutants are changing extremely rapidly in China. The 250 
adopted emissions inventories usually reflect to the situation a few years before the period during 251 
which the model simulations were performed. Since the recent NOX emissions have decreased 252 
significantly in some urban areas of China in response to measures taken by the local authorities (F. 253 
Liu et al., 2017), the anthropogenic emissions used for the current forecasts may be overestimated 254 
in some areas. Some models use reduced NOX and SOX anthropogenic emissions (for details see 255 
Brasseur et al., 2018), however, daytime concentrations of ozone are generally underestimated in 256 
most models, even when the level of NO2 is in reasonable agreement with the observational values. 257 
The discrepancy could be caused by an underestimation of the emissions of some VOCs, especially 258 
in the center of urban areas where ozone is often VOC-limited.  259 
 260 
For PM10 and PM2.5, the model ensemble median shows the best performance compared to all 261 
individual models during the time period under consideration (see Figure 3). For PM10, there is an 262 
overall slight underestimation by all models except by CHIMERE and hence, by the median of the 263 
model ensemble.  For PM2.5, the BIAS is relatively constant (apart in the WRF-Chem-SMS model 264 
which exhibits a lot of variation in the BIAS of PM10 and PM2.5). In this case, the BIAS is slightly 265 
overestimated, but close to zero. 266 
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 267 
Figure 4 shows the temporal correlation coefficients for NO2, O3, PM10 and PM2.5 for each 268 
individual month, and for the whole time period. It can be seen, that there is a wide spread between 269 
the individual models: the calculated correlations range from 0.2 to 0.7 for NO2, PM10 and PM2.5 270 
and from 0.3 to 0.8 for O3. The model ensemble median and CHIMERE are characterized by high 271 
correlation coefficients in the case of NO2, O3 and PM2.5. For PM10, the model ensemble median 272 
and the LOTOS-EUROS model provide the highest correlation coefficients. In general, the model 273 
ensemble median gives the best performance. 274 
 275 
The correlation coefficient of O3 for the ensemble median remains relatively unchanged during the 276 
whole time period, and ranges between 0.6 and 0.8. Considering the whole time period, it is of the 277 
order of 0.75, with CHIMERE providing a slightly higher correlation coefficient for the whole time 278 
period, and also for each individual months. All models exhibit small correlation coefficients in 279 
March 2017. High correlation coefficients are found during the early summer months (June/July). 280 
For PM10 and PM2.5 the correlation coefficients exhibit more variability, starting with very low 281 
correlation for all models and for the ensemble during April and May 2016, high correlation from 282 
June 2016 to March 2017, and again low correlation during April and May 2017. These differences 283 
may be due to missing sources of biomass burning or dust or to individual model tunings. For the 284 
entire time period, the correlation coefficient of the ensemble mean is higher than for each 285 
individual models (~0.58 for PM10 and ~0.78 for PM2.5). The correlation between the model 286 
ensemble and the observations is therefore relatively satisfactory.  287 
 288 

3.2 Evaluation of the Geographical Distribution 289 

The statistical indicators, described above for all contributing cities, have also been calculated for 290 
the individual cities. The purpose here is to assess regional characteristics and to identify model 291 
issues. Figure 5 shows the statistical indicators (RMSE, BIAS and correlation coefficient) for O3, 292 
NO2 and PM2.5 of the Ensemble Median for each city during the time period under consideration 293 
(April 2016 until June 2017). In the upper most left panel, the BIAS of ozone for each city is 294 
shown. It can be seen, that the ensemble median is underestimating the ozone concentrations in the 295 
north and northeastern regions of China, while no significant bias compared to the observations is 296 
found in cities in the southern part of the country. RMSE in the northern/northeastern cities are 297 
higher (around 40 µg m-3) than in southern and western cities (around 20-30 µg m-3). 298 
 299 
The temporal correlation coefficients for ozone calculated for each city over the whole period under 300 
consideration are slightly higher in the northern part of the country and slightly smaller in the 301 
southern regions. This indicates that the day-to-day variability is well simulated, even though the 302 
models are slightly underestimating the ozone pollution in the north. NO2  concentrations (see the 303 
middle panels of Figure 5) are overestimated in some cities and underestimated in other cities. 304 
There is, however, no systematic geographical characterization of the bias. When considering 305 
individual cities, it can be seen that the NO2 concentrations are slightly overestimated in most urban 306 
areas including Beijing, Shanghai, Chengdu, Wuhan and Changsha. The RMSE for NO2 in the 307 
middle panel of Figure 5 is very uniform (around 20 µg m-3) in the whole country. The correlation 308 
coefficients of NO2 (between 0.5 and 0.7) are smaller than those of O3, as NO2 exhibits more 309 
temporal variability than O3. In the case of PM2.5, (see upper most right panel), the concentrations 310 
are well simulated in the northern and southern parts of China, but there are a few city clusters in 311 
the middle of the domain (Chengdu, Chongqing, Wuhan and Changsha) in which the PM2.5 312 
concentrations are overestimated by more than 50µg m-3. These cities also show overestimation 313 
of NO2. The overestimation of PM2.5 may therefore be related to the errors in precursor emissions, 314 
e.g. NOX, SO2. The RMSE of PM2.5 is smaller in the southern part of the domain and along the 315 
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coastline of China, while the model results are less satisfactory in the city clusters located in the 316 
central part of the domain, with very high RMSE of 60-80µg m-3 in three cities. The correlation 317 
coefficients for the individual cities are relatively constant around 0.7 with few cities characterized 318 
by lower correlation coefficients (mostly in the central part of the domain). 319 

 320 

3.3 Evaluation of the diurnal variation 321 

We now examine the ability of the models to reproduce the diurnal variations of the chemical 322 
species’ concentrations. We first provide a general view based on all observations in China and then 323 
examine the particular situation in the city of Beijing. 324 
 325 

3.3.a Analysis based on all observations in China 326 

The RMSE, BIAS, MNBIAS, and FGE of O3, NO2, PM10 and PM2.5 for the seven models and the 327 
ensemble median for all available observations in China are displayed over the forecasting time (0-328 
23h) (Figure 6 and 7). Due to storage limitations, only the predictions for the first 24 hours (0-23h) 329 
were saved while the predictions for the 24h-72h period performed by all models were not retained. 330 
Unfortunately, this does not allow the investigation of a day to day degradation of the statistical 331 
indicators (from day1 to day3). Only the diurnal behavior of the statistical indicators can be 332 
assessed, which provides important hints for possible model issues.   333 
 334 
It can be seen in the left panels of Figure 6 that the statistical indicators of NO2 for the ensemble 335 
median is relatively stable over the time of the day, with slightly higher RMSE and higher 336 
BIAS/MNBIAS during the night time hours. For the individual models, the variability of the RMSE 337 
is somewhat higher during daytime, while some models exhibit very high RMSE and BIAS during 338 
the night time hours. Most models show a positive BIAS of NO2 during the night, but a few of them 339 
exhibit a negative bias; this results in a relatively small BIAS for the ensemble median, showing 340 
good results with respect to the BIAS throughout the day.  341 
 342 
In the case of ozone, the statistical indicators exhibit a variation over the time of the day. The 343 
RMSE is smallest between 7:00 and 9:00 local time, after which it increases until 18:00 in the 344 
evening to become constant at about 30 µg m-3 during the night.  345 
 346 
An examination of the BIAS and MNBIAS for O3 over the day shows that O3 is underestimated by 347 
nearly all models, apart from WRF-Chem-SMS. This might result from the slight overestimation of 348 
NO2 concentrations by most models. Especially during nighttime when the height of the boundary 349 
layer is low, near surface NO2 concentrations are high, and ozone is underestimated by 50% – 100% 350 
by most models. In the first hours of the day, only SILAMtest, WRF-Chem-SMS and LOTOS-351 
EUROS exhibit slightly positive O3 BIAS. The same models produce a negative BIAS for NO2 352 
during the first hours of the day.  353 
 354 
Figure 7 shows that the BIAS and MNBIAS of both PM10 and PM2.5 stay relatively constant over 355 
the time of the day. PM10 is slightly underestimated by the ensemble median (-5 to -10%), while 356 
PM2.5 is slightly overestimated (10 to 25%). In most cases, the models overestimate the PM2.5 357 
observations, while for PM10 there are stronger differences between the individual models. 358 
 359 
For PM10 and PM2.5, the ensemble median exhibits a better performance than the individual 360 
models: the RMSE BIAS, MNBIAS and FGE of the ensemble are on average lower than the 361 
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corresponding statistical parameters of the individual models. This demonstrates again the 362 
advantage of using the ensemble median for the prediction of PM10 and PM2.5. 363 
 364 
Figure 8 presents the diurnal variation of the concentrations of O3, NO2, O3 + NO2 and PM2.5 from 365 
the individual models (and the ensemble median) and from the observations at a specific location 366 
(Beijing). The RMSE and the BIAS are also provided during the whole period under consideration.  367 
 368 
It can be seen that the ensemble median (black line) underestimates the O3 observations (red line) 369 
throughout the day, especially during the nighttime hours and in the late afternoon. Only WRF-370 
Chem-SMS reproduces the amplitude of the O3 diurnal cycle, but it also underestimates the O3 371 
concentrations after 18:00 when the height of the boundary layer is rapidly decreasing. All models 372 
and the ensemble median reproduce the diurnal cycle with a maximum in the late afternoon, but this 373 
maximum produced by the model appears about 2 hours earlier than observed. When considering 374 
the RMSE, the models produce the best results during the morning, and with increasing O3 375 
concentrations as the day progresses, the RMSE is also increasing. The negative BIAS is increasing 376 
for all models and for the model ensemble throughout the day.  377 
 378 

3.3.b Analysis for the specific case of Beijing 379 

 380 
In Beijing, the diurnal variation of the NO2 concentrations is overestimated by the individual 381 
models as also reflected by the ensemble median. During the nighttime, for example, the observed 382 
concentrations are about 20-30 µg m-3 lower than the concentrations associated with the ensemble 383 
median. The individual models and the ensemble median show a much stronger diurnal behavior 384 
than the observations. Atmospheric measurements suggest that the concentrations of NO2 are 385 
relatively constant over the time of the day. This might be due to applied temporal profiles of the 386 
anthropogenic emissions or issues in the vertical mixing of the individual models. Also, the models 387 
with their spatial resolution may not capture the details seen in the observations by the ground 388 
network. The RMSE of all models and for the ensemble median is highest in late afternoon and 389 
during the night. The MarcoPolo-Panda prediction system has thus a tendency to overestimate 390 
surface NO2, which leads to an overestimation of the O3 titration especially at night.  391 
 392 
To further analyze the chemical coupling between ozone and NO2, we have added at each time step 393 
the mixing ratios of O3 and NO2. The resulting variable, called Ox and expressed here in ppbv, has 394 
the advantage of not being affected by the fast interchange (null cycle) and the resulting partitioning 395 
between ozone and NO2 produced by reactions NO + O3, NO2 + hν and O + O2 + M. If only these 396 
three rapid photochemical reactions are considered, Ox is a conserved quantity. In other words, 397 
even when a more comprehensive chemical scheme is adopted, the diurnal cycle of Ox should be 398 
considerably less pronounced that the diurnal cycle of NO2 and O3.  399 
 400 
In fact, in the model forecasts, the sum of O3 and NO2, is nearly constant during the day, but 401 
exhibits nevertheless some diurnal variation, which appears to be weaker than in the observation. 402 
The calculated OX is slightly too high at night and too low during daytime, suggesting an 403 
overestimation in photochemical activity by the majority of the models. The partitioning of OX into 404 
NO2 and O3 is not well reproduced despite the simple chemistry that determines this partitioning: 405 
NO2 is generally too high and O3 too low, especially in the afternoon and early night. The simple 406 
partitioning approach does not seem to work properly under high NOX loading. As a result, the 407 
diurnal cycle of O3 is not well reproduced by the forecasting ensemble and high ozone events are 408 
generally underestimated. This issue is discussed in more detail in the companion paper by 409 
Brasseur et al., 2018. 410 
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 411 
The observed diurnal variation of PM2.5 is not well reproduced by the models and by the ensemble 412 
median. The calculated variability in Beijing is substantially higher than suggested by the 413 
observations (which are characterized by relatively constant concentrations throughout the day). 414 
The models show a maximum in PM2.5 concentrations around 8-9 a.m., and a second maximum 415 
during nighttime hours. This morning maximum is not present in the observations.  The model 416 
ensemble is overestimating the observations in the morning and underestimating them in the early 417 
afternoon, resulting in a diurnal variability of the BIAS, shown in the lowest panel. Again, this 418 
might be related to the adopted diurnal profiles of the anthropogenic emission sources or might be 419 
due to errors in the formulation of vertical mixing in the PBL.   420 
 421 
 422 
 423 

4. The impact of missing model data on the ensemble performance 424 

To assess the impact on the ensemble forecast of occasionally missing results from one or several 425 
models, we compare the following ensembles during a given test period (1-30 May 2017), 426 
separately for O3, NO2 and PM2.5: This approach has already been adopted by Marécal et al., 2015, 427 
to evaluate European air quality predictions. We consider the following cases: 428 
 429 
- “MEDIAN 7”, the median provided by the operational ensemble method, which includes all seven 430 
models; 431 
- “MEDIAN 5”, the median built on five individual models, excluding the “best” and the “worst” 432 
models; 433 
- “MEDIAN 3”, the median built on three individual models, excluding the two “best” and the 434 
“two” worst models; 435 
- “BEST”, the model with the highest performance; 436 
- “WORST”, the model with the lowest performance. 437 
 438 
Since the relative performance of individual models varies in time and space, the criterion to order 439 
the seven individual models from “worst to best” is provided by the value of their respective RMSE 440 
over the test period. For ozone, the criterion is measured by the RMSE over the 30 days between 441 
12:00 and 18:00 LST (ozone peak time) (this criterion is based on the fact that the “best” model 442 
refers to the best forecast of daytime ozone levels).  RMSE is seen as the most objective criterion 443 
since MB and MNMB can include compensating effects. 444 
 445 
Figure 9 shows the statistical indicators for May 2017 as a function of the forecasting time (0-23h) 446 
of the ensemble median based on all 7 models (MEDIAN7, shown in red), 5 models (MEDIAN5, 447 
shown in blue), and 3 models (MEDIAN3, shown in black). The results are also shown for the 448 
“best” and the “worst” model (BEST (magenta) and WORST (light blue)). For all three species, the 449 
ensemble median based on 7 models is of highest quality (based on the statistical indicators used in 450 
this analysis), and generally surpasses the results provided by the “best” model. When only 5 451 
models (excluding the best and the worst) are available to calculate the ensemble, all statistical 452 
indicators show only very small differences with the more inclusive MEDIAN7 case based on seven 453 
models. Reducing the ensemble calculation further to three models (MEDIAN3), the statistical 454 
scores degrade slightly compared to the MEDIAN7 and MEDIAN5 for all three species, but remain 455 
higher or at least similar to the score of the “best” model (BEST). 456 
 457 
It is interesting to note that the “best” model (BEST) is not the same model for the different months 458 
that are investigated, nor the same model for all species. For example, in August 2016, the “best” 459 
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model for O3 and PM2.5 is IFS, while LOTOS-EUROS shows the best performance for NO2.  In 460 
May 2017, the best model for PM2.5 is LOTOS-EUROS and the worst model is IFS, but the results 461 
remain the same: the ensemble product performs better than (or at a similar level as) the best model. 462 
Since the “BEST” model can change depending on time period and species, the ensemble product is 463 
particularly valuable for the sustained quality of the forecasting system. This study shows therefore 464 
that using the ensemble product (median) of models, even if occasionally based on fewer models, is 465 
more useful than using a single model, even if the performance of this individual model is high. The 466 
ensemble product is still robust compared to the observations if the output of some contributing 467 
models is occasionally missing. It also shows that an ensemble product remains valuable even if 468 
only few models are available for the production of the forecast. 469 
 470 
 471 

5. Performance of the Forecasting System for Alert Warnings 472 

The prediction system has been designed to support the development of policies and the calculation 473 
of air quality indexes. One of the applications of the system is to provide alerts to the general public 474 
when acute air pollution episodes are expected. Thus, the performance of the forecast system has 475 
been tested regarding the likelihood to predict air pollution events. We will refer to this type of 476 
forecast as binary prediction of events (Brasseur and Jacob, 2017). 477 
 478 
A model prediction of a specific event such as an air pollution episode at a given location (e.g. 479 
concentration of pollutants exceeding a regulatory threshold) is evaluated by considering a binary 480 
variable and by distinguishing between four possible situations: (1) the event is predicted and 481 
observed, (2) the event is not predicted and not observed, (3) the event is predicted but not 482 
observed, (4) the event is not predicted but is observed. Cases (1) and (2) are regarded as successful 483 
predictions (hits), while (3) and (4) are considered to be failures (misses). The skill of the model for 484 
binary prediction (event or no event) is measured by the fractions of observed events that are 485 
correctly predicted (probability of detection (POD)). The fraction of predicted events, that did not 486 
occur is measured by the false alarm rate (FAR)). 487 
 488 
We have calculated the POD and the FAR for the ensemble median for the cities of Beijing, 489 
Shanghai and Guangzhou between April 2016 and June 2017, specifically for ozone (based on the 8 490 
hour and the daily maximum value), NO2 and PM2.5. The air quality indexes are calculated for 1) 491 
1-hour ozone, 2) 8-hour ozone concentrations 3) 24-hour mean NO2 concentrations, 4) 1-hour NO2 492 
concentrations and 5) 24-hour PM2.5 concentrations. The definitions breakpoints for the individual 493 
air quality indexes (AQI) are shown in Table 1 and Table 2; they are based on current definitions of 494 
AQI from the Chinese government. 495 
 496 
 497 
Table 1: Chinese AQI categories 498 
 499 
Index values AQI levels AQI categories 

0-50 1 Good 

51-100 2 Moderate 

101-150 3 Lightly polluted 

151-200 4 Moderately polluted 

201-300 5 Heavily polluted 

>300 6 Severely polluted 
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 500 
 501 
Table 2: Individual AQI for 1-hour and 8-hour Ozone, 24-hour and 1-hour NO2 and 24-hour PM2.5  502 
 503 
IAQI 1-hour O 3  

[µg m-3] 
8-hour O3  
[µg m-3] 

24-hour NO2  
[µg m-3] 

1-hour NO2  
[µg m-3] 

24-hour PM2.5 
[µg m-3] 

0 0 0 0 0 0 

50 160 100 40 100 35 

100 200 160 80 200 75 

150 300 215 180 700 115 

200 400 265 280 1200 150 

300 800 800 565 2340 250 

400 1000 Use hourly 750 3090 350 

500 1200 Use hourly 940 3840 500 

 504 
 505 
In order to highlight the presence of thresholds violated during the time period under consideration, 506 
Figure 10-12 show the time series for the period April 2016 – July 2017 of the 1) daily maximum 507 
ozone concentrations, 2) 8-hour moving average of ozone, 3) the 24-hour mean NO2 concentrations, 508 
4) the daily maximum NO2 concentrations and 5) the 24-hour mean PM2.5 concentrations for 509 
Beijing (Figure 10), Shanghai (Figure 11) and Guangzhou (Figure 12) derived from the model and 510 
from the observations at each location. Pink lines indicate the thresholds for the air quality indexes 511 
for moderate (line), lightly polluted (dashed line) and moderately polluted (dotted line) conditions 512 
for each pollutant. 513 
 514 
In Beijing and Shanghai, the daily maximum ozone concentrations exceeded the thresholds of 160 515 
(moderate) and 200 (lightly polluted) within the considered time period only during the months of 516 
April to September 2016. During the months of October 2016 to March 2017, the ozone 517 
concentrations remained below the threshold of 160, highlighting fair air quality conditions with 518 
regard to ozone in wintertime. In Beijing, the ensemble median has a probability of detection of air 519 
pollution events for moderate 1-hour ozone AQI of 0.44 (55 out of 126 events of 1-hour ozone 520 
breaking the threshold of 160 µg m-3 have been detected). The False Alarm Rate (FAR) is 0.05 (the 521 
model ensemble predicted 58 events where ozone exceeds the threshold of 160 µg m-3, where 3 out 522 
of these 58 events were false alarm (observations below the threshold). Lightly polluted events (1-523 
hour ozone exceeding 200 µg m-3) were correctly predicted only 14 times, while the observations 524 
exceeded the threshold 79 times. The FAR for lightly polluted ozone events is 0.12 (2 out of 16).  525 
 526 
For moderately polluted ozone events (1-hour ozone exceeding 300 µg m-3), the POD is 0, the 527 
model ensemble was not able to predict the 4 observed events (FAR is not applicable, (0 out of 0)). 528 
Looking at the 8-hour ozone predictions for Beijing, the model ensemble is very similar, with a 529 
POD of 0.45 (864 out of the 1921 observed events have been predicted correctly) and a FAR of 530 
0.06 (56 counts are false alarm out of 920 events). For lightly polluted ozone conditions, the POD is 531 
0.18 (118 out of 657 observed events) with a FAR = 0.06 (7 out of 125 are false alarm). For 532 
moderately polluted conditions, the model ensemble predicted 7 out of 150 observed events 533 
correctly with a FAR of 0.22 (2 out of 9 alarms  are false). 534 
 535 
For Shanghai, the PODs for ozone predictions are lower than in Beijing: for moderate air quality 536 
conditions, the POD is 0.16 (15 out of 92 observed events are predicted correctly) with a FAR of 0 537 
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(no false alarm) for 1-hour ozone predictions, and POD = 0.21 (488 out of 2346 observed events) 538 
with a FAR of 0.01 (7 false alarms relative to 495 counts) for 8-hour ozone predictions. For lightly 539 
polluted conditions, the POD is decreasing: POD = 0.08 (3 correct predictions out of 38 observed 540 
events) with FAR of 0 (no false alarm, 3 correct predictions) for 1-hour ozone, and POD = 0.07 (27 541 
out of 398 observed) with a FAR of 0.10 (3 false alarms out of 30) for 8-hour ozone. For 542 
moderately polluted conditions (1-hour ozone exceeding 300 µg m-3 or 8-hour ozone exceeding 215 543 
µg m-3), the POD for 1-hour ozone is not applicable (no predicted, no observed events), and for 8-544 
hour ozone POD = 0 (0 predicted out of the 29 observed), FAR = 1 (2 false alarms out of 2 545 
predicted, but not observed). 546 
 547 
In Guangzhou, there is no clear difference between ozone conditions in summer or wintertime 548 
during the considered time period. Ozone observations regularly exceed the threshold of 160 549 
(moderate) and 200 µg m-3 (lightly polluted) during the whole time period, and 5 times 1-hour 550 
ozone is exceeding the threshold of 300 µg m-3. 551 
The POD of 1-hour ozone in Guangzhou is 0.16 (15 correct predictions out of 94 observed) with 552 
FAR = 0.21 (4 false alarms out of 19 predicted) for moderate conditions, and POD = 0.03 (1 553 
predicted out of 36 observed) with FAR = 0 (0 out of 1 predicted) for lightly polluted conditions, 554 
and POD = 0 (0 predicted out of 5 observed events) for moderately polluted ozone conditions. For 555 
8-hour ozone, the POD is 0.31 (315 correct predicted out of 1032 observed) with FAR = 0.28 (122 556 
false alarms of 437 predicted events) for moderate conditions, POD = 0.06 (12 out of 217 observed) 557 
with FAR = 0 (no false alarm out of 12 predicted events) for lightly polluted ozone conditions, and 558 
POD = 0 (0 out of 47 observed events) for moderately polluted ozone conditions. 559 
 560 
In general, the ability of the model ensemble to predict correctly ozone air pollution events is best 561 
for light ozone pollution, while it fails to predict correctly the ozone pollution events for moderately 562 
polluted situations. This is mostly a result of the model ensemble being too low compared to the 563 
observations. The predictions can be improved by applying a bias correction to the ozone 564 
predictions. This is investigated in the following Section 5.1. 565 
 566 
The NO2 predictions of the ensemble median are in general too high compared to the observation, 567 
especially in Beijing and Shanghai. Especially, in summertime (June/July/August/September), the 568 
model predictions are sometimes twice as high as the observations, which might be a result of 569 
uncertainties in the emissions. In all three cities under consideration, the NO2 concentrations are 570 
only exceeding the thresholds of 40 µg m-3 for 24-hour NO2 (100 for 1-hour NO2) and 80 µg m-3 for 571 
24-hour NO2 (200 µg m-3 for 1-hour NO2) during the considered period (moderate and lightly 572 
polluted conditions for NO2). During wintertime (November/December/January), the observations 573 
are slightly higher than in summer and the ensemble system is in better agreement with the 574 
observations.  575 
 576 
In Beijing, the POD for 24-hour NO2 is 1 (214 of 214 observed events are predicted) for moderate 577 
conditions with a FAR of 0.46 (180 false alarms relative to 394 predicted events). This indicates 578 
that NO2 is generally overestimated by the model ensemble. For lightly polluted events, the POD is 579 
0.79 (27 predicted out of 34 observed events) with FAR = 0.70 (63 false alarms out of 90 580 
predicted).  For the 1-hour NO2, the POD for moderate conditions is 0.61 (36 out of 59 observed 581 
events) with FAR = 0.80 (141 false alarms out of 177 predicted). For lightly polluted conditions, no 582 
events have been observed nor predicted for 1-hour NO2 in Beijing during the considered period. In 583 
Beijing, the threshold for moderately polluted NO2 conditions has not been exceeded neither by 1-584 
hour NO2 nor by 24h- NO2 during the considered period. 585 
 586 
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In Shanghai, the numbers are very similar to those in Beijing: POD for 24-hour NO2 is 1 (208 of 587 
208 observed events are predicted) for moderate conditions with a FAR of 0.42 (152 false alarms of 588 
360 predicted events). There is also a general overestimation by the model ensemble compared to 589 
the observations. For lightly polluted conditions, the POD for 24-hour NO2 is 0.67 (10 out of 15 590 
observed) and a FAR of 0.86 (60 false alarms of 70 predicted), which is a clear result of the 591 
overestimated NO2. For the 1-hour NO2, the POD is 0.91 (48 predicted out of 53 observed) with a 592 
FAR of 0.70 (111 false alarms out of 159 predicted) for moderate conditions. The thresholds for 593 
lightly polluted and moderately polluted conditions for 1-hour NO2 have not been exceeded in 594 
Shanghai during the considered period, but there was 1 false alarm (1 out of 1) for lightly polluted 595 
conditions. 596 
 597 
In Guangzhou, the model ensemble and the observations for NO2 are in better agreement. There is 598 
slight overestimation of the NO2 concentrations from May to September 2016, and in May 2017, 599 
but in general, there is a good agreement between the model time series and the observations. The 600 
POD for 24h-NO2 exceeding the threshold for moderate conditions is 0.94 (208 predicted out of 222 601 
observed) with a FAR of 0.35 (110 false alarms of 318 predicted events), for lightly polluted 602 
conditions POD is 0.56 (15 predicted out of 27 observed) with 32 false alarms out of 47 predicted 603 
events (FAR = 0.69). Stronger polluted events have not been observed nor predicted for NO2 in 604 
Guangzhou. For the 1-hour NO2, 58 events have been predicted out of 76 observed for moderate 605 
conditions (POD = 0.76, FAR = 0.63 (97 false alarms out of 155 predicted). For lightly polluted 606 
conditions, there was 1 false alarm (1 out of 1), with neither observed nor correctly predicted 607 
events. 608 
The thresholds for moderately polluted conditions for 24-hour NO2 and 1-hour NO2 have not been 609 
exceeded in Guangzhou during the considered period, no events have been predicted nor observed. 610 
 611 
The predictions of PM2.5 (24-hour PM2.5) of the model ensemble are in very good agreement with 612 
the observations in all three cities during the considered period. 613 
 614 
In Beijing, the POD for the prediction of moderate condition for 24-h PM2.5 is 0.95 (268 correctly 615 
predicted events out of 283 observed) with a FAR of 0.19 (61 false alarms out of 329 predicted 616 
events). For lightly polluted conditions, the POD is 0.76 (111 correct predicted events of 146 617 
observed events) with a FAR of 0.28 (43 false alarms for 154 predicted events). Moderately 618 
polluted PM2.5 events have been correctly predicted 33 times out of 64 observed events (POD = 619 
0.52) with a FAR of 0.35 (18 false alarms out of 51 predicted events). 620 
 621 
In Shanghai, 191 moderate condition-events for PM2.5 have been correctly predicted out of 220 622 
observed events (POD = 0.87, FAR = 0.19), with 46 false alarms out of the 237 predicted events. 623 
For lightly polluted events, the POD is 0.84 (32 out of 38 observed events) with a FAR of o.47 (28 624 
false alarms of 60 predicted events). For moderately polluted conditions of PM2.5, the POD is 0.50 625 
(3 correctly predicted events out of 6 observed) with a relatively high FAR (0.67, 6 false alarms out 626 
of 9 predicted). 627 
 628 
In Guangzhou, the POD for moderate conditions of PM2.5 is 0.85 (149 correctly predicted out of 629 
175 observed) with 65 false alarms out of 214 predicted events (FAR = 0.30). Lightly polluted 630 
events have been observed only 7 times, the ensemble median predicted 4 of them correctly (POD = 631 
0.57), but with a very high false alarm rate (16 false alarms out of 20 predicted events, FAR = 632 
0.80), this indicates a slight overestimation of the PM2.5 concentrations of the models compared to 633 
the observations. In Guangzhou, no moderately polluted events of PM2.5 have been observed nor 634 
predicted during the considered period. 635 
 636 
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Only in Beijing, and only with regard to 24-hour PM2.5, heavily polluted conditions have been 637 
observed and predicted during the considered period in the winter months 2016/2017:  The POD is 638 
0.5 (18 correct predicted out of 36 observed events) with a FAR of 0.28 (7 false alarms out of 25). 639 
 640 
These investigations show, that the model ensemble is well suited to be used in air quality 641 
predictions of PM2.5. For ozone, due to biases of the model ensemble compared to observations, 642 
the model ensemble is not able to predict ozone pollution in an appropriate way. Although the FAR 643 
is very low for ozone predictions, the POD of model ensemble is not very high. In the following 644 
Section, we apply bias correction to improve the predictions for ozone pollution events. 645 
 646 

5.1 Bias Correction for Ozone Predictions 647 

Bias corrections can be applied to improve the predictions of an individual model or a model 648 
ensemble. In our case, we have calculated the summertime bias of the time series of the hourly 649 
ozone concentrations from the model ensemble with respect to the hourly observations, and 650 
subtracted the bias from the hourly time series. For predictions of ozone air pollution, the 651 
summertime is an appropriate season to consider since the ozone thresholds are exceeded only 652 
during this season. As the bias between the observations and the model might not be the same for 653 
each month, and our goal is to obtain the best improvement in the ozone predictions for 654 
summertime, we have subtracted the mean summertime bias (mean of the bias of 655 
June/July/August/September 2016) from the original time series. The daily maximum ozone values 656 
and the 8-hour moving average for the corrected time series have then been calculated. The 657 
resulting, POD and FAR for 1-hour ozone and 8-hour ozone under different air quality conditions 658 
are shown in Table 3. This table shows that, for bias-corrected predictions, the POD in all three 659 
cities is larger than for the non-corrected time series, especially in the case of moderate and lightly 660 
polluted conditions of ozone. Thus, the predictions of air pollution events are significantly 661 
improved when the bias correction is applied in the case of ozone. Only for the predictions of 662 
moderately polluted conditions of ozone, the POD is not changing. The FAR is also slightly 663 
decreasing for all cities, but the improvement is small. 664 
 665 
In Beijing, the POD air pollution events represented by a moderate AQI for 1-hour ozone increased 666 
from 0.44 for Beijing (55 out of 126 observed events) before bias correction to 0.69 (87 out of 126 667 
events) after bias correction. The False Alarm Rate (FAR) also increased from 0.05 (3 false alarms 668 
out of these 58 events) to 0.10 (10 false alarms out of 97 predicted events). Lightly polluted events 669 
(1-hour ozone exceeding 200 µg m-3) have been predicted correctly 31 times (14 times without the 670 
corrections), while the observations exceeded the threshold 79 times. The FAR for lightly polluted 671 
ozone events also slightly increased from 0.125 (2 out of 16) to 0.2 (8 false alarms out of 40). 672 
 673 
For moderately polluted ozone events (1-hour ozone exceeding 300 µg m-3), the POD for the bias-674 
corrected prediction is still 0. The model ensemble was not able to predict the 4 observed events 675 
(FAR is not applicable, (0 out of 0)). 676 
 677 
Looking at the 8-hour ozone predictions for Beijing, the POD of 0.45 (864 out of the 1921 observed 678 
events have been predicted correctly) increased to 0.76 (1452 out of 1921) after bias corrections, 679 
and the FAR from 0.06 (56 counts are false alarm out of 920) to 0.23 (424 false alarms out of 1876 680 
predictions) for moderate ozone pollution. For lightly polluted ozone conditions, the POD increased 681 
to 0.44 (291 out of 657) and FAR = 0.22 (81 false alarms of 372 predicted) for the bias corrected 682 
predictions compared to POD = 0.18 (118 out of 657 observed events) with a FAR = 0.06 (7 out of 683 
125 are false alarm). For moderately polluted conditions, the model ensemble with bias corrected 684 
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predicted 27 (instead of only 7) out of 150 observed events correctly with a FAR of 0.28 (13 false 685 
alarms of 47 predictions) compared to FAR of 0.22 (2 out of 9 are false alarm). 686 
 687 
For Shanghai, for moderate air quality conditions of ozone, the POD increased from 0.16 to 0.51 688 
(47 (15 for non-corrected) out of 92 observed events are predicted correctly); the FAR increased 689 
from 0 (no false alarm) to 0.10 (5 false alarms out of 52) for 1-hour Ozone predictions. For 8-hour 690 
ozone predictions, the POD increased from 0.21 to 0.66 (1554 (non-corrected: 488) out of 2346 691 
observed events), the FAR  increased from 0.01 (7 false alarms of 495 predicted events) to 0.32 692 
(726 false alarms of 2280 counts) for 8-hour ozone predictions. For lightly polluted ozone 693 
conditions, the POD increased from 0.08 (3 correct predictions out of 38 observed) with FAR of 0 694 
(no false alarm, 3 correct predictions) to POD = 0.34 (13 out of 38) with FAR = 0.07 (1 false alarm 695 
of 14 predicted events) for 1-hour ozone, and for 8-hour ozone, the POD increased from 0.07 to 696 
0.27 (109 (non-corrected: 27) out of 398 observed) and the FAR increased from 0.10 (3 false alarms 697 
out of 30) to 0.13 (16 false alarms in 125 predicted events). For moderately polluted ozone 698 
conditions, the POD for 1-hour ozone is not applicable for both non-corrected and bias-corrected 699 
predictions (no predicted, no observed events), but for the bias-corrected prediction, one false alarm 700 
is observed (FAR = 1, 1 false alarm in 1 predicted event), and for 8-hour ozone POD increased 701 
from 0 to 0.10 (3 (non-corrected: 0) predicted out of the 29 observed), the FAR decreased from 1 (2 702 
false alarms out of 2 predicted, but not observed) to 0.8 (12 false alarms of 15 predicted events). 703 
 704 
In Guangzhou, the predictions are not as accurate as in Beijing and Shanghai, and the bias 705 
corrections result only in slight improvements of the ozone forecasts for Guangzhou. The POD of 1-706 
hour ozone in Guangzhou increased from 0.16 to 0.32 (30 (non-corrected: 15) correct predictions 707 
out of 94 observed) and the FAR slightly increased from 0.21 (4 false alarms out of 19 predicted) to 708 
0.33 (15 false alarms out of 45 predicted events) for moderate conditions. For lightly polluted ozone 709 
conditions, the POD increased from 0.03 to 0.14 (5 (non corrected: 1) predicted out of 36 observed) 710 
and the FAR increased from 0 (0 out of 1 predicted) to 0.29 (2 false alarms of 7 predicted events). 711 
For moderately polluted ozone predictions, the POD and FAR did not change with bias corrections 712 
(POD = 0 (0 predicted out of 5 observed events), FAR not applicable). 713 
 714 
For 8-hour ozone of moderate conditions, the POD increased from 0.31 to 0.49 (508 (non-corrected: 715 
315) correct predicted out of 1032 observed) and the FAR increased from 0.28 (122 false alarms of 716 
437 predicted events) to 0.37 (296 false alarms for 804 predictions). For lightly polluted ozone 717 
conditions the POD increased from 0.06 to 0.13  (29 (non-corrected: 12) out of 217 observed) and 718 
the FAR increased from 0 (no false alarm out of 12 predicted events) to 0.19 (7 false alarms for 36 719 
predicted events). For moderately polluted ozone conditions, the POD and FAR did not change with 720 
bias corrections (POD= 0 (0 out of 47 observed events), FAR not applicable). 721 
 722 
Figure 13 a–c shows the time series of the model ensemble, the bias corrected time series of the 723 
model ensemble and the observations. For the daily maximum ozone, the bias correction results in a 724 
better agreement with the observations, which also results in better event predictions. For 8-hour 725 
ozone, there is better agreement during summertime, while during the wintertime, the bias-corrected 726 
ozone time series are too high compared to the observations (both correcting for the bias derived 727 
from the total time series, or only from the summertime time series). This shows (as we have seen 728 
in Section 3.1), that the bias is not the same during the whole year, and also that the diurnal cycle of 729 
ozone is not well captured by the model ensemble. While the bias corrected daily maximum ozone 730 
is in better agreement with the observations, the 8-hour bias corrected moving average is too high 731 
during winter time (with very low ozone concentrations). As the ozone is too low in winter to 732 
exceed the lowest threshold (moderate conditions) for air quality index calculations, this is not 733 
affecting the quality of the event prediction. A more sophisticated bias-correction (bias correction 734 
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with diurnal and annual variation included) could be applied to further improve the predictions, 735 
provided that a longer time series (more than one year of data) is available. The statistical bias 736 
correction can then be used for the improvement of future predictions. 737 
 738 
 739 

6.  Conclusions and Future Developments 740 

 741 
In this paper, we evaluate the forecasting system developed and implemented as part of the EU 742 
Panda and MarcoPolo projects after a little more than one year of operation. The forecasting system 743 
is based on an ensemble of seven state-of-the-art chemistry-transport models (CHIMERE, EMEP, 744 
IFS, LOTOS-EUROS, WRF-Chem-MPIM, WRF-Chem-SMS, SILAMtest). Each model is 745 
executed on a computer platform hosted by individual institutes in China and Europe. Input for 746 
meteorological forcing, emissions and boundary conditions have been carefully chosen and adopted 747 
for the specific situation of China, but vary from model to model. The forecasting system provides 748 
every day hourly forecasts for 3 days ahead for four major chemical pollutants (O3, NO2, PM10 and 749 
PM2.5) together with hourly observational data provided by the Chinese observational network 750 
(www.pm25.in).  751 
 752 
The models, whose predictions are strongly influenced by the adopted weather forecast, reproduce 753 
in general the regional features and capture many air pollution events. In most cases, the model 754 
ensemble reproduces satisfactorily the day-to-day variability of the concentrations of the primary 755 
and secondary air pollutants and in particular, predicts the occurrence of pollution events a few days 756 
before they occur. Overall, and in spite of some discrepancies, the air quality forecasting system is 757 
well suited for the prediction of air pollution events and has the ability to be used for alert warning 758 
(binary prediction) of the general public, specifically if bias corrections are applied to improve the 759 
ozone forecasts.  760 
 761 
In most cases, the ensemble approach provides more accurate forecasts and reduces the 762 
uncertainties in comparison with the individual models results. The calculation of the median of all 763 
models is also relatively insensitive to model outliers, and is computationally efficient. Using the 764 
ensemble median based on all models provides the best performance for all species, as the relative 765 
performance of any individual model may vary in time, space and species. We showed, that the 766 
ensemble product, even if occasionally based on fewer models, is more useful than a single model 767 
of good quality, and that the ensemble product is still robust compared to the observations if data 768 
from some contributing models are occasionally missing.  769 
 770 
Despite the fact that the prediction system is in its development phase and that the resources 771 
available to improve the system are limited, the MarcoPolo and Panda forecasting system can be 772 
viewed as already quite successful. The inter-comparison presented in the companion paper by 773 
Brasseur et al., 2018 and the present evaluation were performed to diagnose differences between 774 
models, identify problems and contribute to individual model improvements. Specifically, the 775 
underestimation of ozone under high NOX conditions and the resulting errors in the diurnal cycle of 776 
ozone need to be addressed in an effort to improve the model forecasts in China.  Although major 777 
efforts are ongoing to improve emission inventories for China, the remaining uncertainties, 778 
especially in regard to local emissions, may partly explain the differences between models and 779 
observations. This is subject of further investigation. Furthermore, data assimilation of satellite and 780 
in situ observations should significantly improve the performance of the forecasting system. Finally, 781 
a more advanced approach to extract observations provided by the Chinese network is expected to 782 
improve the model-data comparison.  783 
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Data Availability  784 

 785 
The models described here are used operationally by the participating research and service 786 
organizations involved in the present study. The data produced by the multi-model forecasting 787 
system are available from the Royal Dutch Meteorological Institute (KNMI). 788 
 789 
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 Table 3: POD and FAR for Beijing, Shanghai and Guangzhou   801 

 Probability of Detection (POD)  False Alarm Rate (FAR)  

Beijing  AQI 2  
(moderate) 

AQI 3  
(lightly poll.) 

AQI 4 
(moderately poll.) 

AQI 2 
(moderate) 

AQI 3 
(lightly poll.) 

AQI 4 
(moderately poll.) 

1-hour O 3  [µg m -3] 0.44 
(55/126) 

0.18 
(14/79) 

0 
(0/4) 

0.05 
(3/58) 

0.12 
(2/16) 

NaN 
(0/0) 

Bias corrected 1 -hour O 3  
[µg m -3] 

0.69 
(87/126) 

0.41 
(32/79) 

0 
(0/4) 

0.10 
(10/97) 

0.20 
(8/40) 

NaN 
(0/0) 

8-hour O 3  [µg m -3] 0.45 
(864/1921) 

0.18 
(118/657) 

0.05 
(7/150) 

0.06 
(56/920) 

0.06 
(7/125) 

0.22 
(2/9) 

Bias corrected 8 -hour O 3  
[µg m -3] 

0.76 
(1452/1921) 

0.44 
(291/657) 

0.23 
(34/150) 

0.23 
(424/1876) 

0.21 
(81/372) 

0.28 
(13/47) 

24-hour NO2  [µg m -3] 1 
(214/214) 

0.79 
(27/34) 

NaN 
(0/0) 

0.46 
180/394) 

0.70 
(63/90) 

NaN 
(0/0) 

1-hour NO2  [µg m -3] 0.61 
(36/59) 

NaN 
(0/0) 

NaN 
(0/0) 

0.80 
(141/177) 

NaN 
(0/0) 

NaN 
(0/0) 

24-hour PM2.5 [µg m -3] 0.95 
(268/283) 

0.76 
(111/146) 

0.52 
(33/64) 

0.19 
(61/329) 

0.28 
(43/154) 

0.35 
(18/51) 

Shanghai        

1-hour O 3  [µg m -3] 0.16 
(15/92) 

0.08 
(3/38) 

NaN 
(0/0) 

0 
(0/15) 

0 
(0/3) 

NaN 
(0/0) 

Bias corrected 1 -hour O 3  
[µg m -3] 

0.51 
(47/92) 

0.34 
(13/38) 

NaN 
(0/0) 

0.10 
(5/52) 

0.07 
(1/14) 

1 
(1/1) 

8-hour O 3  [µg m -3] 0.21 
(488/2346) 

0.07 
(27(398) 

0 
(0/29) 

0.01 
(7/495) 

0.10 
(3/30) 

1 
(2/2) 

Bias corrected 8 -hour O 3  
[µg m -3] 

0.66 
(1554/2346) 

0.27 
(109/398) 

0.10 
(3/29) 

0.32 
(726/2280) 

0.13 
(16/125) 

0.80 
(12/15) 

24-hour NO2  [µg m -3] 1 
(208/208) 

0.67 
(10/15) 

NaN 
(0/0) 

0.42 
(152/360) 

0.86 
(60/70) 

NaN 
(0/0) 

1-hou r NO2  [µg m -3] 0.91 
(48/53) 

NaN 
(0/0) 

NaN 
(0/0) 

0.70 
(111/159) 

1 
(1/1) 

NaN 
(0/0) 

24-hour PM2.5 [µg m -3] 0.87 
(191/220) 

0.84 
(32/38) 

0.50 
(3/6) 

0.19 
(46/237) 

0.47 
(28/60) 

0.67 
(6/9) 

Guangzhou        

1-hour O 3  [µg m -3] 0.16 
(15/94) 

0.03 
(1/36) 

0 
(0/5) 

0.21 
(4/19) 

0 
(0/1) 

NaN 
(0/0) 

Bias corrected 1 -hour O 3  
[µg m -3] 

0.32 
(30/94) 

0.14 
(5/36) 

0 
(0/5) 

0.33 
(15/45) 

0.29 
(2/7) 

NaN 
(0/0) 

8-hour O 3  [µg m -3] 0.31 
(315/1032) 

0.06 
(12/217) 

0 
(0/47) 

0.28 
(122/437) 

0 
(0/12) 

NaN 
(0/0) 

Bias corrected 8 -hour O 3  
[µg m -3] 

0.49 
(508/1032) 

0.13 
(29/217) 

0 
(0/47) 

0.37 
(296/804) 

0.19 
(7/36) 

NaN 
(0/0) 

24-hour NO2  [µg m -3] 0.94 
(208/222) 

0.56 
(15/27) 

NaN 
(0/0) 

0.35 
(110/318) 

0.68 
(32/47) 

NaN 
(0/0) 

1-hour NO2  [µg m -3] 0.76 
(58/76) 

NaN 
(0/0) 

NaN 
(0/0) 

0.63 
(97/155) 

1 
(1/1) 

NaN 
(0/0) 

24-hour PM2.5 [µg m -3]  0.85 
(149/175) 

0.57 
(4/7) 

NaN 
(0/0) 

0.30 
(65/214) 

0.80 
(16/20) 

NaN 
(0/0) 
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 802 
Table 4: POD and FAR for PM2.5 for Beijing under heavily polluted conditions. 803 

 804 
Beijing AQI heavily 
polluted 

POD FAR 

24-hour PM2.5 [µg m-3 ] 0.50 
(18/36) 

0.28 
(7/25) 

 805 
  806 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-234
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 1 October 2018
c© Author(s) 2018. CC BY 4.0 License.



21 

 807 

 808 
Figure 2: RMSE, BIAS, MNBIAS and FGE of NO2 and O3 for each month and for the entire time 809 
period (April 2016 – June 2017, lines on the right side of each panel).  810 
 811 
 812 
 813 
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 814 
Figure 3: RMSE, BIAS, MNBIAS and FGE of PM10 and PM2.5 for each month and for the entire 815 
time period (April 2016 – June 2017, lines on the right side of each panel).  816 
 817 
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 818 
Figure 4: Correlation coefficients based on hourly concentrations of NO2, O3, PM10 and PM2.5 for 819 
each month and for the entire time period between April 2016 and June 2017 (lines on the right 820 
side of each panel). 821 
 822 
 823 
 824 
 825 
 826 
 827 
 828 
 829 
 830 
 831 
 832 
 833 
 834 
 835 
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 888 
Figure 5: Map of the BIAS, RMSE and temporal correlation coefficient of O3, NO2 and PM2.5 for 889 
the whole time period (April 2016 until June 2017) for each city.  890 
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 891 
Figure 6: RMSE, BIAS, MNBIAS and FGE of NO2 and O3 over the forecasting time (time of the 892 
day). 893 
 894 
 895 
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 911 
 912 

 913 
Figure 7: RMSE, BIAS, MNBIAS and FGE of PM10 and PM2.5 over the forecasting time (time of 914 
the day). 915 
 916 
 917 
 918 
 919 
 920 
 921 
 922 
 923 
 924 
 925 
 926 
 927 
 928 
 929 
 930 
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 931 

 932 
Figure 8: Diurnal variations of the concentrations and of the RMSE and BIAS of O3, NO2, OX and 933 
PM2.5 for Beijing for the whole time period (April 2016 – June 2017). 934 
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 935 
 936 

 937 
Figure 9: RMSE, BIAS, MNBIAS and FGE of O3, NO2 and PM2.5 over the forecasting time (time of 938 
the day) for the Median7, Median5, Median3 and the best and the worst model. 939 
 940 
 941 
 942 
 943 
 944 
 945 
 946 
 947 
 948 
 949 
 950 
 951 
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Figure 10: Timeseries of daily maximum O3, 8-hour moving average O3, 24-hour mean NO2, daily 997 
maximum NO2 and 24-hour mean PM2.5 for Beijing from April 2016 until June 2017. 998 
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 1043 
Figure 11: Timeseries of daily maximum O3, 8-hour moving average O3, 24-hour mean NO2, daily 1044 
maximum NO2 and 24-hour mean PM2.5 for Shanghai from April 2016 until June 2017. 1045 
 1046 
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Figure 12: Calculated (ensemble median) and observed timeseries of daily maximum O3, 8-hour 1091 
moving average O3, 24-hour mean NO2, daily maximum NO2 and 24-hour mean PM2.5 for 1092 
Guangzhou from April 2016 until June 2017. 1093 
 1094 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-234
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 1 October 2018
c© Author(s) 2018. CC BY 4.0 License.



32 

Figure 13 a and b: Timeseries of calculated (ensemble 1095 
median) and observed daily maximum and 8-hour moving average O3 for Beijing and Shanghai 1096 
together with the bias corrected calculated timeseries. 1097 
 1098 
 1099 
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 1141 
Figure 13 c: Timeseries of calculated (ensemble median) and observed daily maximum and 8-hour 1142 
moving average O3 for Guangzhou together with the bias corrected calculated timeseries. 1143 
 1144 
 1145 
 1146 
 1147 
 1148 
 1149 
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