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Abstract;

An operational multi-model forecasting system for quality has been developed to provide air
quality services for urban areas of China. Theahfbrecasting system included seven state-of-the-
art computational models developed and executdguiope and China (CHIMERE, IFS, EMEP
MSC-W, WRF-Chem-MPIM, WRF-Chem-SMS, LOTOS-EUROS &itdAMtest). Several other
models joined the prediction system recently, knet ot considered in the present analysis. In
addition to the individual models, a simple mulibdel ensemble was constructed by deriving
statistical quantities such as the median and #nnof the predicted concentrations.

The prediction system provides daily forecasts abservational data of surface ozone, nitrogen
dioxides and particulate matter for the 37 largebtin agglomerations in China (population higher
than 3 million in 2010). These individual forecaasswell as the multi-model ensemble predictions
for the next 72 hours are displayed as hourly dstpon a publicly accessible web site

(www.marcopolo-panda.gu

In this paper, the performance of the predictioystesn (individual models and the multi-model
ensemble) for the first operational year (April 80dntil June 2017) has been analysed through
statistical indicators using the surface observalialata reported ahinesenational monitoring
stations. This evaluation aims to investigate & #easonal behavior, b) the geographical
distribution and c) diurnal variations of the entdamand model skills. Statistical indicators show
that the ensemble product usually provides the egbrmance compared to the individual model
forecasts. The ensemble product is robust eveesdasionally some individual model results are
missing.

Overall and in spite of some discrepancies, thejaality forecasting system is well suited for the
prediction of air pollution events and has theigbtb provide alert warning (binary prediction) of
air pollution events if bias corrections are applie improve the ozone predictions.
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1. Introduction

With the rapid development of its economy, China ha&en experiencing repeated intense air
pollution episodes (e.g5uo et al., 2014, Huang et al., 2014, Wang et2d14 with a wide range

of health effectsKampa and Castanas 2008; Wu et al., 2012; Hamral.e2015; Boynard et al.,
2014; WHO, 201Band serious consequences on ecosysteoslér et al., 2008, Ashmore, 2005;
Leisner et al., 2012; Sinha et al., 201&d on climateSitch et al 2007;Brasseur et al., 1999;
Akimoto, 2003 High concentrations of particulate matter oféewer a large area of eastern China
during winter when air remains stagnant for sevel@s and chemical compounds emitted by
power plants, industrial complexes, traffic and dstit infrastructures remain trapped near the
surface (e.gWang et al., 2014; Zhao et al., 2Q1PDuring summer, photochemical processes
convert nitrogen oxides (NQ and volatile organic compounds (VOCS) into trq@uesic ozone
(O3) (e.g-Xu et al., 2008, Sun et al., 2016

Long-term solutions to mitigate air pollution regia fundamental transformation of the energy
system, which may require decades to be fully imgleted. Short-term actions to avoid severe air
pollution episodes, however, can be put in placenéaiately if such episodes can be reliably
predicted a few days prior to their occurrence. @a@hensive air quality models that capture
meteorological, chemical and physical processethéntroposphere and predict the fate of air
pollutants are key tools to forecast the likelihaddiir pollution episodes and hence to inform the
authorities.

Within the EU projects MarcoPolo and Panda, thaluitle European as well as Chinese partner
organizations, an operational multi-model forecagsystem for air quality including a number of
different chemical transport models has been dgeelpand is providing daily forecasts of ozone,
nitrogen oxides, and particulate matter for thel&8gest urban areas of China (population higher
than 3 million in 2010). These individual forecaatswell as the mean and median concentrations
for the next 3 dayare posted on a dedicated website (www.marcopatmi.eu/forecast) together
with the hourly observational data from local measwents reported by the Chinese monitoring
network of the China National Environmental Monibgr Centre (CNEMC) (data available at
www.pm25.in). This operational air quality analyarsd forecasting system is presented in detail in
a companion paperBfasseur et al, 2008 where the individual models contributing to the
MarcoPolo-Panda prediction system are describatldatails about the individual models and their
individual settings are provided. Information absalkected parametrization options for the physical
processes, including boundary layer, radiation,veotion and surface processes, and about the
emissions adopted in MarcoPolo-Panda predictiotesyare also provided.

In the present study, we evaluate the predictiatesy of the MarcoPolo and Panda projects that
have been in operation for more than one year. Wheentrate on the period April 2016 to June
2017 and analyse the model forecasts (7 individual modeld &¢he ensemble median) and
observational data for 34 cities (covered by mdsthe models, depending on the extent of the
domains, for two models only 31 and 32 cities).

We evaluate the performance of the individual med®lolved in the present study, and to examine
the performance of the overall forecasting systesn domparing the predicted surface
concentrations to values reported by the Chinaspadiution monitoring network. Section 2 of the
paper provides a brief description of the forecastsystem, while Section 3 investigates the
performance of the system using different stati$ficdicators including the mean bias (BIAS), the
root mean square error (RMSE), the modified norsealibias (MNBIAS), the fractional gross error
(FGE) and the correlation coefficient. We deriveparticular (a) statistical indicators for each
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model over the time of the year (on a monthly Basi®rder to analyse seasonal characteristics, (b)
the geographical distribution of the statisticaligators for the ensemble median in order to derive
regional characteristics and issuey, the statistical indicators of all models andtled ensemble
median over the time of the day (considering aldeiebservation pairs of all cities and for the
whole time period) and for a specific city (Beijjntpgether with the diurnal variation of the
pollutants during the whole time period. In Sectlgnwe assess the impacts of missing forecasts
from one or more models on the production of theeerble. As the prediction system intends to
provide warning of air pollution episodes to thengel public, the system performance has been
evaluated regarding its ability to predict the esdence of air quality thresholds (binary prediction
of pollution events). This analysis is presente@attion 5. We show that the application of bias
correction to the models improves the forecastkilissof binary ozone predictions. We conclude
with a summary and outlook in Section 6.

2. Description of the Analysis and Forecasting System

Within the EU projects MarcoPolo and Panda, a nunobehemistry transport models have been
applied to provide daily air quality forecasts forselection of 37 large Chinese agglomerations
(population over 3 million, 2010 census). Initialseven models, CHIMERE (Royal Netherlands
Meteorological Institute (KNMI)), IFS (European Qenfor Medium Range Weather Forecast
(ECMWF)), WRF-chem-SMS (Shanghai Meteorological v&er (SMS)), SILAMtest (Finish
Meteorological Institute (FMI)), WRF-chem-MPIM (Ma®lanck Institute for Meteorology
(MPIM) in Hamburg), EMEP MSC-W (hereafter refertedas ‘EMEP’, Norwegian Meteorological
Institute (MET Norway)) and LOTOS-EUROS (The Netards Organisation for Applied
Scientific Research (TNO)) were providing dailydoasts every day at 0:00 UTC for the next 72
hours (three days) for NQO;, PM10 and PM2.5 (see Figure 1). WRF-CMAQ and WRMS-
CMAQ, both used by Chinese institutions (Nanjingiwénsity and SMS), have joined recently the
prediction system, but are not considered in tlesgmt analysis.

We should note that the models considered in tlesgmt study may have significantly evolved
since the present analysis was performed. Thihdscase, for example, of the SILAM model
developed by the Finish Meteorological Institutdaose configuration was still in a test mode, and
is therefore referred to as SILAMtest.

The individual models are executed independentlytten computing systems available in each
partner institution. The surface concentrationshef key chemical species are extracted locally
from the model outputs and forwarded to a centedhlohse operated by the Royal Netherlands
Meteorological Institute (KNMI).

Hourly predictions of surface concentrations (egpeel in pg/rf), are provided by the models as
grid values, which are bi-linearly interpolateddity center coordinates. The average for the data
provided by the urban network (usually around 5skdtions), is posted together with the
corresponding standard deviation and the numbepwfributing stations. In the present analysis,
we consider only the model simulations correspamdin34 cities, since the cities of Uriimgi (most
western, only covered by three models), ChangcmanHarbin (most northern cities), are located
outside of the domains covered by most individuateis, which are indicated in the companion
paper Brasseur et al., 2018

In addition to the forecasts provided by the indidal participating models, a multi-model ensemble
was constructed from which the median and the nweare derived. To process the ensemble
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median, all seven individual models are first iptdated to a common horizontal grid. For each
grid point, the ensemble model is calculated asviedian value of the individual model forecasts.
The median is relatively insensitive to outlierghe forecasts. The method is also less vulnetable
occasionally missing data from individual modeksttze minimum number of model results needed
to calculate a meaningful ensemble mean or mediaalmost always available. This will be
discussed in detail in Section 4. The multi-modgbraach also provides more accurate forecasts
and thus reduces the underlying uncertainties (#sbes shown in the following section). More
advanced methods, e.g. based on individual modé#b,skre discussed in the literature (e.g.
Galmarini et al, 2013 They are significantly more costly from a conatignal point of view and
therefore not well suited for daily operations.
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Figure 1. Map of the 34 cities/urban clusters (pltion over 3 million (2010 census)) with
available data (observational and model ensemblesd in this evaluation.

3. Evaluation of the performance of the system

The evaluation of the performance of a forecastiystem is a necessary step for assessing the
quality of the predictions and demonstrating itsfukess. It also provides important information
that can lead to the improvement of the forecastiyglem and to further model development. The
comparison between model output and in situ measemes is not straightforward because of the
different nature of the respective quantities:caiality models provide volume averaged quantities
over each model grid cell and time averages owentbdeling time step. Observations are available
at fixed measurement sites and at a fixed timethEurthey are influenced by local processes that
are not necessarily well captured by relativelyrseanodels. Thus, the representativeness of the
observational site is not always guaranteed.

The MarcoPolo-Panda forecasting and analysis systa® the surface observations available at the
web site www.pm25.in for 37 Chinese cities. Foiiveeq city, the observational data considered for

the evaluation of the model consist of an averdgbeomeasurements made at the different stations
of the urban network, usually 5 — 12 stations, Whace aggregated to one value for the whole city.

The model fields are bilinearly interpolated to dity center coordinates.

The mean bias
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BIAS =~ ¥(m; — 0y),

wherem; ando; are the model forecast value and the observatadney andN the number of
model-observation pairs, the root mean square error

RMSE = ’%Zi(mi -0;)?,

the modified normalized bias

(mi—0y)
(my+0y)’

MNBIAS = =3

the fractional gross error

2 m; — 0;
FGE =—Z|
N - mi+0i
A

and the correlation coefficient between the modetdast and observed values

_ il =) (0= 0)

Om0o

R

are used to measure the system performance. Heaad 6 are the mean values of the model
forecast and observed values, apdando, are the corresponding standard deviations.

The evaluation presented here aims to investigatheastatistical indicators for each model over
the time of the year (on a monthly basis) so that seasonal features can be characterized and
related issues of individual models can be ideaif{Section 3.1); b) the geographical distribution
of the statistical indicators of the ensemble meda@highlight regional characteristics and related
issues (Section 3.2); c) statistical indicatoralbmodels and the ensemble median over the time of
the day (considering all model-observation pairalbtities and for the whole time period) and for

a specific city (Beijing) together with the diurnariation of the pollution species over the whole
time period (Section 3.3).

3.1 Evaluation of the Seasonal Behavior of the Models

We start our evaluation of the multi-model predintsystem by examining the seasonal behavior of
the predicted concentrations of key chemical speciée statistical indicators mentioned above
have been calculated separately for each month &pril 2016 to June 2017 and for the entire
period during which the forecasting system was afpmmal. Due to storage issues, only the
predictions for the first 24 hours (0-23h) wereeshwhile the predictions from 24h-72h were not
retained and not analyzed in this work.
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Figure 2 shows the RMSE, BIAS, MNBIAS and FGE of ]N(@ft panel) and @(right panel) for
each of the seven individual models included ingytem and for the model ensemble median, for
each individual month between April 2016 and JuB&72 The same results are also provided for
the whole period (“all”). It can be seen, that thés a wide spread of the results produced by the
seven models. The individual models are continlyolnsproving during the first months because
many changes have been applied by the differentetimgd groups in order to improve their
individual predictions. In the case of BOmost individual models slightly overestimate the
concentrations compared to observations. In the EMibdel, it may be explained by the larger
nitric oxide emissions used in comparison with tteer models (Brasseur et al., 2018). This
results in a positive BIAS and MNBIAS for most mtxland the ensemble median. The RMSE of
the model ensemble is highest in July/August/Sep&r016 and remains relatively constant after
October 2016. It can be seen, that the medianeofrtbdel ensemble has the lowest RMSE fop,NO
the smallest BIAS and MNBIAS (slightly positive) cuthe lowest FGE. This demonstrates the
advantage of adopting a model ensemble ratherttigaprediction provided by individual models.

Most models underestimates Qlikely as a result of the overestimated Necause the O
production is not NOx-limited) during the whole ek under consideration. For;Qhe CHIMERE
model shows slightly better performance (lowest EYlghan the model ensemble median. The
median BIAS for Q is relatively constant (slightly negative). Fbis particular species, the model
ensemble median does not provide the best redtrding the BIAS. In fact, in this case, the
model LOTOS-EUROS gives the best performance fanez Interestingly, this particular model
has the largest negative BIAS for B’ he median BIAS of @remains relatively constant during
the period, while the MNBIAS exhibits higher negativalues during the winter months, as a result
of the relative low @concentrations during winter time.

As stated above, the MarcoPolo-Panda predictiotesysas the tendency to overestimate surface
NO,, which leads to © titration especially during night time. The enndssinjection height is also

a relevant factor here since it can largely infeeerthe results in the planetary boundary layer.
During night-time, emissions from stacks may beetplace above the mixing layer and explain
model-data discrepancies since the models oftemrasshat the injection of primary pollutants
takes place in the first layer above the surface.

Anthropogenic emissions of primary pollutants alanging extremely rapidly in China. The
adopted emissions inventories usually reflect o gituation a few years before the period during
which the model simulations were performed. Sinoe tecent NQ emissions have decreased
significantly in some urban areas of China in resggoto measures taken by the local authorikes (
Liu et al., 2017, the anthropogenic emissions used for the cuf@etasts may be overestimated
in some areas. Some models use reduced & SQ anthropogenic emissions (for details see
Brasseur et al., 2098 however, daytime concentrations of ozone areegdly underestimated in
most models, even when the level of N®in reasonable agreement with the observatiealakes.
The discrepancy could be caused by an underestimafithe emissions of some VOCs, especially
in the center of urban areas where ozone is ofte@V¥Mmited.

For PM10 and PM2.5, the model ensemble median sliogvbest performance compared to all
individual models during the time period under ddemtion (see Figure 3). For PM10, there is an
overall slight underestimation by all models exdeptCHIMERE and hence, by the median of the
model ensemble. For PM2.5, the BIAS is relativaystant (apart in the WRF-Chem-SMS model
which exhibits a lot of variation in the BIAS of Al and PM2.5). In this case, the BIAS is slightly
overestimated, but close to zero.
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Figure 4 shows the temporal correlation coeffigefar NG, O;, PM10 and PM2.5 for each
individual month, and for the whole time periodc#n be seen, that there is a wide spread between
the individual models: the calculated correlatioasge from 0.2 to 0.7 for NOPM10 and PM2.5
and from 0.3 to 0.8 for 9 The model ensemble median and CHIMERE are chataet by high
correlation coefficients in the case of N@s; and PM2.5. For PM10, the model ensemble median
and the LOTOS-EUROS model provide the highest tatiom coefficients. In general, the model
ensemble median gives the best performance.

The correlation coefficient of £for the ensemble median remains relatively uncedrduring the
whole time period, and ranges between 0.6 and@b8sidering the whole time period, it is of the
order of 0.75, with CHIMERE providing a slightlydhier correlation coefficient for the whole time
period, and also for each individual months. Alldals exhibit small correlation coefficients in
March 2017. High correlation coefficients are fouwhating the early summer months (June/July).
For PM10 and PM2.5 the correlation coefficientsikittmore variability, starting with very low
correlation for all models and for the ensemblarduApril and May 2016, high correlation from
June 2016 to March 2017, and again low correlatfiaing April and May 2017. These differences
may be due to missing sources of biomass burnirdust or to individual model tunings. For the
entire time period, the correlation coefficient thle ensemble mean is higher than for each
individual models (~0.58 for PM10 and ~0.78 for PB)2 The correlation between the model
ensemble and the observations is therefore relathatisfactory.

3.2 Evaluation of the Geographical Distribution

The statistical indicators, described above forcahitributing cities, have also been calculated for
the individual cities. The purpose here is to essegional characteristics and to identify model
issues. Figure 5 shows the statistical indicatBISE, BIAS and correlation coefficient) forsO
NO, and PM2.5 of the Ensemble Median for each cityrduthe time period under consideration
(April 2016 until June 2017). In the upper most Ipénel, the BIAS of ozone for each city is
shown. It can be seen, that the ensemble mediamdierestimating the ozone concentrations in the
north and northeastern regions of China, while ignificant bias compared to the observations is
found in cities in the southern part of the counRMSE in the northern/northeastern cities are
higher (around 40 pg ) than in southern and western cities (around 20-@@i°).

The temporal correlation coefficients for ozonecaldted for each city over the whole period under
consideration are slightly higher in the northeartpof the country and slightly smaller in the
southern regions. This indicates that the day-tpadaiability is well simulated, even though the
models are slightly underestimating the ozone fioltuin the north. N@ concentrations (see the
middle panels of Figure 5) are overestimated in esaities and underestimated in other cities.
There is, however, no systematic geographical cheniaation of the bias. When considering
individual cities, it can be seen that the Nfoncentrations are slightly overestimated in noolsan
areas including Beijing, Shanghai, Chengdu, Wuhath @hangsha. The RMSE for N@n the
middle panel of Figure 5 is very uniform (around 2§ mi°) in the whole country. The correlation
coefficients of NQ (between 0.5 and 0.7) are smaller than those fa® NQ exhibits more
temporal variability than © In the case of PM2.5, (see upper most right patied concentrations
are well simulated in the northern and southertspair China, but there are a few city clusters in
the middle of the domain (Chengdu, Chongqging, Wuhad Changsha) in which the PM2.5
concentrations are overestimated by more than BOfigrhese cities also show overestimation
of NO.,. The overestimation of PM2.5 may therefore beteeldo the errors in precursor emissions,
e.g. NQ, SQ. The RMSE of PM2.5 is smaller in the southern pédrthe domain and along the
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coastline of China, while the model results are Isatisfactory in the city clusters located in the
central part of the domain, with very high RMSEGS-80ug ri¥ in three cities. The correlation
coefficients for the individual cities are relatiyeonstant around 0.7 with few cities charactetize
by lower correlation coefficients (mostly in thentel part of the domain).

3.3 Evaluation of the diurnal variation

We now examine the ability of the models to repamthe diurnal variations of the chemical
species’ concentrations. We first provide a gemaeal based on all observations in China and then
examine the particular situation in the city of jBej.

3.3.a Analysis based on all observations in China

The RMSE, BIAS, MNBIAS, and FGE of O3, NO2, PM1@@M2.5 for the seven models and the
ensemble median for all available observationshin€ are displayed over the forecasting time (O-
23h) (Figure 6 and 7). Due to storage limitatioody the predictions for the first 24 hours (0-23h)
were saved while the predictions for the 24h-72iodeperformed by all models were not retained.
Unfortunately, this does not allow the investigatiof a day to day degradation of the statistical
indicators (from dayl to day3). Only the diurnalhbeior of the statistical indicators can be
assessed, which provides important hints for ptessitodel issues.

It can be seen in the left panels of Figure 6 thatstatistical indicators of NQor the ensemble
median is relatively stable over the time of they,daith slightly higher RMSE and higher
BIAS/MNBIAS during the night time hours. For thedimidual models, the variability of the RMSE
is somewhat higher during daytime, while some moéeghibit very high RMSE and BIAS during
the night time hours. Most models show a positileBof NO, during the night, but a few of them
exhibit a negative bias; this results in a reldgiv@nall BIAS for the ensemble median, showing
good results with respect to the BIAS throughoetdhy.

In the case of ozone, the statistical indicatorBilek a variation over the time of the day. The
RMSE is smallest between 7:00 and 9:00 local tiafter which it increases until 18:00 in the
evening to become constant at about 30 {fgiaoring the night.

An examination of the BIAS and MNBIAS fors@ver the day shows that; @ underestimated by
nearly all models, apart from WRF-Chem-SMS. Thigmiresult from the slight overestimation of
NO, concentrations by most models. Especially duriigpttime when the height of the boundary
layer is low, near surface N@oncentrations are high, and ozone is underesirat 50% — 100%
by most models. In the first hours of the day, o8l AMtest, WRF-Chem-SMS and LOTOS-
EUROS exhibit slightly positive 9BIAS. The same models produce a negative BIASNGx
during the first hours of the day.

Figure 7 shows that the BIAS and MNBIAS of both RMind PM2.5 stay relatively constant over

the time of the day. PM10 is slightly underestimaltgy the ensemble median (-5 to -10%), while

PM2.5 is slightly overestimated (10 to 25%). In moases, the models overestimate the PM2.5
observations, while for PM10 there are strongdedihces between the individual models.

For PM10 and PM2.5, the ensemble median exhibitetter performance than the individual
models: the RMSE BIAS, MNBIAS and FGE of the enskmére on average lower than the
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corresponding statistical parameters of the indi@idmodels. This demonstrates again the
advantage of using the ensemble median for thdqtied of PM10 and PM2.5.

Figure 8 presents the diurnal variation of the emi@tions of @ NO,, O; + NO, and PM2.5 from
the individual models (and the ensemble median)feomd the observations at a specific location
(Beijing). The RMSE and the BIAS are also provideding the whole period under consideration.

It can be seen that the ensemble median (black linderestimates thes@bservations (red line)
throughout the day, especially during the nighttinoairs and in the late afternoon. Only WRF-
Chem-SMS reproduces the amplitude of thed@rnal cycle, but it also underestimates the O
concentrations after 18:00 when the height of thenlary layer is rapidly decreasing. All models
and the ensemble median reproduce the diurnal gyithea maximum in the late afternoon, but this
maximum produced by the model appears about 2 heartier than observed. When considering
the RMSE, the models produce the best results glutie morning, and with increasings O
concentrations as the day progresses, the RMSEadsrereasing. The negative BIAS is increasing
for all models and for the model ensemble througltioe day.

3.3.b Analysis for the specific case of Beijing

In Beijing, the diurnal variation of the NCconcentrations is overestimated by the individual
models as also reflected by the ensemble mediarindthe nighttime, for example, the observed
concentrations are about 20-30 ug tawer than the concentrations associated withetreemble
median. The individual models and the ensemble amedhow a much stronger diurnal behavior
than the observations. Atmospheric measurementgestighat the concentrations of N@re
relatively constant over the time of the day. Timight be due to applied temporal profiles of the
anthropogenic emissions or issues in the vertigging of the individual models. Also, the models
with their spatial resolution may not capture thetails seen in the observations by the ground
network. The RMSE of all models and for the ensembkedian is highest in late afternoon and
during the night. The MarcoPolo-Panda predictiosteasyn has thus a tendency to overestimate
surface NO2, which leads to an overestimation ef@3 titration especially at night.

To further analyze the chemical coupling betweemnezand N@ we have added at each time step
the mixing ratios of @and NQ. The resulting variable, called Ox and expressze n ppbv, has
the advantage of not being affected by the fastdahiange (null cycle) and the resulting partitignin
between ozone and N@roduced by reactions NO +NO, + hv and O + @ + M. If only these
three rapid photochemical reactions are considdbedis a conserved quantity. In other words,
even when a more comprehensive chemical schendojse, the diurnal cycle of Ox should be
considerably less pronounced that the diurnal ocgtNO, and Q.

In fact, in the model forecasts, the sum of &d NQ, is nearly constant during the day, but
exhibits nevertheless some diurnal variation, wtdppears to be weaker than in the observation.
The calculated @ is slightly too high at night and too low duringaydime, suggesting an
overestimation in photochemical activity by the andty of the models. The partitioning ofydnto
NO, and Q is not well reproduced despite the simple chemittat determines this partitioning:
NO; is generally too high andsQ@oo low, especially in the afternoon and earlyhhig’he simple
partitioning approach does not seem to work prgpender high NQ loading. As a result, the
diurnal cycle of @ is not well reproduced by the forecasting ensermabig high ozone events are
generally underestimated. This issue is discussethdre detail in the companion paper by
Brasseur et al., 2018
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The observed diurnal variation of PM2.5 is not wefiroduced by the models and by the ensemble
median. The calculated variability in Beijing is bstantially higher than suggested by the
observations (which are characterized by relativagstant concentrations throughout the day).
The models show a maximum in PM2.5 concentrationsral 8-9 a.m., and a second maximum
during nighttime hours. This morning maximum is moésent in the observations. The model
ensemble is overestimating the observations imtbming and underestimating them in the early
afternoon, resulting in a diurnal variability ofettBIAS, shown in the lowest panel. Again, this
might be related to the adopted diurnal profileshaf anthropogenic emission sources or might be
due to errors in the formulation of vertical mixiimgthe PBL.

4. The impact of missing model data on the ensemble performance

To assess the impact on the ensemble forecastcaSionally missing results from one or several
models, we compare the following ensembles duringiveen test period (1-30 May 2017),
separately for @ NO, and PM2.5: This approach has already been adbpgtbthrécal et al., 2015,
to evaluate European air quality predictions. Wiestder the following cases

- “MEDIAN 7”, the median provided by the operatibeasemble method, which includes all seven
models;

- “MEDIAN 5", the median built on five individual odels, excluding the “best” and the “worst”
models;

- “MEDIAN 3", the median built on three individuahodels, excluding the two “best” and the
“two” worst models;

- “BEST”, the model with the highest performance;

- “WORST”, the model with the lowest performance.

Since the relative performance of individual modedsies in time and space, the criterion to order
the seven individual models from “worst to bestpisvided by the value of their respective RMSE

over the test period. For ozone, the criterion &asured by the RMSE over the 30 days between
12:00 and 18:00 LST (ozone peak time) (this cateris based on the fact that the “best” model

refers to the best forecast of daytime ozone I@veRMSE is seen as the most objective criterion

since MB and MNMB can include compensating effects.

Figure 9 shows the statistical indicators for M&12 as a function of the forecasting time (0-23h)
of the ensemble median based on all 7 models (MBD|Ashown in red), 5 models (MEDIANS,
shown in blue), and 3 models (MEDIANS, shown indida The results are also shown for the
“best” and the “worst” model (BEST (magenta) and R&X (light blue)). For all three species, the
ensemble median based on 7 models is of highestyg(msed on the statistical indicators used in
this analysis), and generally surpasses the reputtgided by the “best” model. When only 5
models (excluding the best and the worst) are abigilto calculate the ensemble, all statistical
indicators show only very small differences witke thore inclusive MEDIAN7Y case based on seven
models. Reducing the ensemble calculation furtbethtee models (MEDIAN3), the statistical
scores degrade slightly compared to the MEDIAN7 BifitDIANS for all three species, but remain
higher or at least similar to the score of the tbemdel (BEST).

It is interesting to note that the “best” model @B is not the same model for the different months
that are investigated, nor the same model forpaEties. For example, in August 2016, the “best”

10
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model for Q and PM2.5 is IFS, while LOTOS-EUROS shows the Ipestormance for N@ In
May 2017, the best model for PM2.5 is LOTOS-EUR®@8 #he worst model is IFS, but the results
remain the same: the ensemble product performerkibtin (or at a similar level as) the best model.
Since the “BEST” model can change depending on fier®d and species, the ensemble product is
particularly valuable for the sustained qualitytteé forecasting system. This study shows therefore
that using the ensemble product (median) of moéeksn if occasionally based on fewer models, is
more useful than using a single model, even ifpiormance of this individual model is high. The
ensemble product is still robust compared to theeplations if the output of some contributing
models is occasionally missing. It also shows #Hratensemble product remains valuable even if
only few models are available for the productionha forecast.

5. Performance of the Forecasting System for Alert Warnings

The prediction system has been designed to sugipodevelopment of policies and the calculation
of air quality indexes. One of the applicationgh# system is to provide alerts to the generalipubl
when acute air pollution episodes are expecteds,Tthe performance of the forecast system has
been tested regarding the likelihood to predictpaillution events. We will refer to this type of
forecast as binary prediction of eve(@sasseur and Jacob, 2017

A model prediction of a specific event such as mrpallution episode at a given location (e.g.
concentration of pollutants exceeding a regulatbrgshold) is evaluated by considering a binary
variable and by distinguishing between four possidituations: (1) the event is predicted and
observed, (2) the event is not predicted and neemed, (3) the event is predicted but not
observed, (4) the event is not predicted but ientesl. Cases (1) and (2) are regarded as successful
predictions (hits), while (3) and (4) are considet be failures (misses). The skill of the moae! f
binary prediction (event or no event) is measurgdthe fractions of observed events that are
correctly predicted (probability of detection (PQDJhe fraction of predicted events, that did not
occur is measured by the false alarm rate (FAR)).

We have calculated the POD and the FAR for the mhke median for the cities of Beijing,
Shanghai and Guangzhou between April 2016 and 20he, specifically for ozone (based on the 8
hour and the daily maximum value), N@nd PM2.5. The air quality indexes are calculdtedl)
1-hour ozone, 2) 8-hour ozone concentrations A4 mean N@concentrations, 4) 1-hour NO
concentrations and 5) 24-hour PM2.5 concentratidhs. definitions breakpoints for the individual
air quality indexes (AQI) are shown in Table 1 drable 2; they are based on current definitions of
AQI from the Chinese government.

Table 1: Chinese AQI categories

Index values AQI levels AQI categories
0-50 1 Good

51-100 2 Moderate

101-150 3 Lightly polluted
151-200 4 Moderately polluted
201-300 5 Heavily polluted
>300 6 Severely polluted

11
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Table 2: Individual AQI for 1-hour and 8-hour Ozone, 24-hand 1-hour N@and 24-hour PM2.5

IAQI 1-hour O 3 8-hour O3 24-hour NO, 1-hour NO, 24-hour PM2.5
[ug m?] [ug m?] [ug m?] [ug m?] [ug m?]

0 0 0 0 0 0

50 160 100 40 100 35

100 200 160 80 200 75

150 300 215 180 700 115

200 400 265 280 1200 150

300 800 800 565 2340 250

400 1000 Use hourly 750 3090 350

500 1200 Use hourly 940 3840 500

In order to highlight the presence of thresholddated during the time period under consideration,
Figure 10-12 show the time series for the periodilA916 — July 2017 of the 1) daily maximum
ozone concentrations, 2) 8-hour moving averageofe, 3) the 24-hour mean B@oncentrations,

4) the daily maximum N@concentrations and 5) the 24-hour mean PM2.5 cdrat@ons for
Beijing (Figure 10), Shanghai (Figure 11) and Gudwogl (Figure 12) derived from the model and
from the observations at each location. Pink limedcate the thresholds for the air quality indexes
for moderate (line), lightly polluted (dashed lirex)d moderately polluted (dotted line) conditions
for each pollutant.

In Beijing and Shanghai, the daily maximum ozonecemtrations exceeded the thresholds of 160
(moderate) and 200 (lightly polluted) within thensa@lered time period only during the months of
April to September 2016. During the months of Oetol2016 to March 2017, the ozone
concentrations remained below the threshold of béghlighting fair air quality conditions with
regard to ozone in wintertime. In Beijing, the enbée median has a probability of detection of air
pollution events for moderate 1-hour ozone AQI of40(55 out of 126 events of 1-hour ozone
breaking the threshold of 160 pg’rhave been detected). The False Alarm Rate (FABRDS (the
model ensemble predicted 58 events where ozoneeésdbe threshold of 160 pg°nwhere 3 out
of these 58 events were false alarm (observatietwabthe threshold). Lightly polluted events (1-
hour ozone exceeding 200 ug*ywere correctly predicted only 14 times, while titgservations
exceeded the threshold 79 times. The FAR for lighdllluted ozone events is 0.12 (2 out of 16).

For moderately polluted ozone events (1-hour ozexzeeding 300 pg 1), the POD is 0, the
model ensemble was not able to predict the 4 obdezvents (FAR is not applicable, (0 out of 0)).
Looking at the 8-hour ozone predictions for Beijinge model ensemble is very similar, with a
POD of 0.45 (864 out of the 1921 observed evente eeen predicted correctly) and a FAR of
0.06 (56 counts are false alarm out of 920 evehts)lightly polluted ozone conditions, the POD is
0.18 (118 out of 657 observed events) with a FAR.@6 (7 out of 125 are false alarm). For
moderately polluted conditions, the model ensenyiedicted 7 out of 150 observed events
correctly with a FAR of 0.22 (2 out of 9 alarmse &alse).

For Shanghai, the PODs for ozone predictions amerldhan in Beijing: for moderate air quality
conditions, the POD is 0.16 (15 out of 92 obsermeents are predicted correctly) with a FAR of O

12
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(no false alarm) for 1-hour ozone predictions, &@D = 0.21 (488 out of 2346 observed events)
with a FAR of 0.01 (7 false alarms relative to 4@&ints) for 8-hour ozone predictions. For lightly

polluted conditions, the POD is decreasing: POD.G8 ({3 correct predictions out of 38 observed
events) with FAR of O (no false alarm, 3 corre@dictions) for 1-hour ozone, and POD = 0.07 (27
out of 398 observed) with a FAR of 0.10 (3 falsarals out of 30) for 8-hour ozone. For

moderately polluted conditions (1-hour ozone exiree800 g 1if or 8-hour ozone exceeding 215

pg m?), the POD for 1-hour ozone is not applicable (nedjzted, no observed events), and for 8-
hour ozone POD = 0 (0 predicted out of the 29 ofesBr FAR = 1 (2 false alarms out of 2

predicted, but not observed).

In Guangzhou, there is no clear difference betwessne conditions in summer or wintertime
during the considered time period. Ozone obsematiegularly exceed the threshold of 160
(moderate) and 200 pg (lightly polluted) during the whole time periodnda5 times 1-hour
ozone is exceeding the threshold of 300 pg m

The POD of 1-hour ozone in Guangzhou is 0.16 (Ifsect predictions out of 94 observed) with
FAR = 0.21 (4 false alarms out of 19 predicted) fiooderate conditions, and POD = 0.03 (1
predicted out of 36 observed) with FAR = 0 (0 ofittqredicted) for lightly polluted conditions,
and POD = 0 (0 predicted out of 5 observed evdatanoderately polluted ozone conditions. For
8-hour ozone, the POD is 0.31 (315 correct prediog of 1032 observed) with FAR = 0.28 (122
false alarms of 437 predicted events) for moderatalitions, POD = 0.06 (12 out of 217 observed)
with FAR = 0 (no false alarm out of 12 predictecets) for lightly polluted ozone conditions, and
POD = 0 (0 out of 47 observed events) for modeygtelluted ozone conditions.

In general, the ability of the model ensemble tedjmt correctly ozone air pollution events is best
for light ozone pollution, while it fails to predicorrectly the ozone pollution events for moddgate
polluted situations. This is mostly a result of thedel ensemble being too low compared to the
observations. The predictions can be improved bylyay a bias correction to the ozone
predictions. This is investigated in the followiSgction 5.1.

The NG predictions of the ensemble median are in geriecahigh compared to the observation,
especially in Beijing and Shanghai. Especiallysimmertime (June/July/August/September), the
model predictions are sometimes twice as high asothservations, which might be a result of
uncertainties in the emissions. In all three citiesler consideration, the N@oncentrations are
only exceeding the thresholds of 40 pg far 24-hour NQ (100 for 1-hour NG) and 80 pg i for
24-hour NQ (200 pg nt for 1-hour NQ) during the considered period (moderate and Kghtl
polluted conditions for Ng). During wintertime (November/December/January® observations
are slightly higher than in summer and the ensershlem is in better agreement with the
observations.

In Beijing, the POD for 24-hour NQs 1 (214 of 214 observed events are predictedinfaderate
conditions with a FAR of 0.46 (180 false alarmsatigk to 394 predicted events). This indicates
that NG is generally overestimated by the model ensenftaelightly polluted events, the POD is
0.79 (27 predicted out of 34 observed events) W&R = 0.70 (63 false alarms out of 90
predicted). For the 1-hour NOthe POD for moderate conditions is 0.61 (36 dus® observed
events) with FAR = 0.80 (141 false alarms out of predicted). For lightly polluted conditions, no
events have been observed nor predicted for 14H@urin Beijing during the considered period. In
Beijing, the threshold for moderately polluted Né»nditions has not been exceeded neither by 1-
hour NG nor by 24h- N@ during the considered period.
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In Shanghai, the numbers are very similar to thosBeijing: POD for 24-hour N@is 1 (208 of
208 observed events are predicted) for moderatditbmms with a FAR of 0.42 (152 false alarms of
360 predicted events). There is also a generalestieration by the model ensemble compared to
the observations. For lightly polluted conditiotise POD for 24-hour N@is 0.67 (10 out of 15
observed) and a FAR of 0.86 (60 false alarms ofpi#dlicted), which is a clear result of the
overestimated N@ For the 1-hour Ng) the POD is 0.91 (48 predicted out of 53 obserwveéth) a
FAR of 0.70 (111 false alarms out of 159 predictiat)moderate conditions. The thresholds for
lightly polluted and moderately polluted conditiofts 1-hour NQ have not been exceeded in
Shanghai during the considered period, but there Wtalse alarm (1 out of 1) for lightly polluted
conditions.

In Guangzhou, the model ensemble and the obsengatis NQ are in better agreement. There is
slight overestimation of the NQroncentrations from May to September 2016, anblay 2017,
but in general, there is a good agreement betwembdel time series and the observations. The
POD for 24h-NQ exceeding the threshold for moderate conditiofis94 (208 predicted out of 222
observed) with a FAR of 0.35 (110 false alarms ©8 $redicted events), for lightly polluted
conditions POD is 0.56 (15 predicted out of 27 obsd) with 32 false alarms out of 47 predicted
events (FAR = 0.69). Stronger polluted events hastebeen observed nor predicted for N©®
Guangzhou. For the 1-hour N(b8 events have been predicted out of 76 obsdvedhoderate
conditions (POD = 0.76, FAR = 0.63 (97 false alawuns of 155 predicted). For lightly polluted
conditions, there was 1 false alarm (1 out of lithwmeither observed nor correctly predicted
events.

The thresholds for moderately polluted conditioms Z4-hour NQ and 1-hour N@have not been
exceeded in Guangzhou during the considered perdyents have been predicted nor observed.

The predictions of PM2.5 (24-hour PM2.5) of the mloehsemble are in very good agreement with
the observations in all three cities during thesidered period.

In Beijing, the POD for the prediction of moderatandition for 24-h PM2.5 is 0.95 (268 correctly
predicted events out of 283 observed) with a FAR.GP (61 false alarms out of 329 predicted
events). For lightly polluted conditions, the PO 0.76 (111 correct predicted events of 146
observed events) with a FAR of 0.28 (43 false atafor 154 predicted events). Moderately
polluted PM2.5 events have been correctly predi@@dimes out of 64 observed events (POD =
0.52) with a FAR of 0.35 (18 false alarms out ofgsédicted events).

In Shanghai, 191 moderate condition-events for BMfave been correctly predicted out of 220
observed events (POD = 0.87, FAR = 0.19), with &6¢ef alarms out of the 237 predicted events.
For lightly polluted events, the POD is 0.84 (32 ofi38 observed events) with a FAR of 0.47 (28
false alarms of 60 predicted events). For modergtelluted conditions of PM2.5, the POD is 0.50
(3 correctly predicted events out of 6 observedhairelatively high FAR (0.67, 6 false alarms out
of 9 predicted).

In Guangzhou, the POD for moderate conditions oRPMs 0.85 (149 correctly predicted out of
175 observed) with 65 false alarms out of 214 mtedi events (FAR = 0.30). Lightly polluted
events have been observed only 7 times, the ensenddlian predicted 4 of them correctly (POD =
0.57), but with a very high false alarm rate (1&daalarms out of 20 predicted events, FAR =
0.80), this indicates a slight overestimation & BM2.5 concentrations of the models compared to
the observations. In Guangzhou, no moderately tgallevents of PM2.5 have been observed nor
predicted during the considered period.
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Only in Beijing, and only with regard to 24-hour RN, heavily polluted conditions have been
observed and predicted during the considered pémitice winter months 2016/2017: The POD is
0.5 (18 correct predicted out of 36 observed eyemith a FAR of 0.28 (7 false alarms out of 25).

These investigations show, that the model ensersbleell suited to be used in air quality
predictions of PM2.5. For ozone, due to biaseshefrhodel ensemble compared to observations,
the model ensemble is not able to predict ozonkijmh in an appropriate way. Although the FAR
is very low for ozone predictions, the POD of modekemble is not very high. In the following
Section, we apply bias correction to improve thedftions for ozone pollution events.

5.1 Bias Correction for Ozone Predictions

Bias corrections can be applied to improve the iptieshs of an individual model or a model
ensemble. In our case, we have calculated the sttimmebias of the time series of the hourly
ozone concentrations from the model ensemble wedpect to the hourly observations, and
subtracted the bias from the hourly time seriest predictions of ozone air pollution, the
summertime is an appropriate season to considee stme ozone thresholds are exceeded only
during this season. As the bias between the ohisengaand the model might not be the same for
each month, and our goal is to obtain the best drgment in the ozone predictions for
summertime, we have subtracted the mean summertiias (mean of the bias of
June/July/August/September 2016) from the origimaé series. The daily maximum ozone values
and the 8-hour moving average for the correcteck tgaries have then been calculated. The
resulting, POD and FAR for 1-hour ozone and 8-hmmone under different air quality conditions
are shown in Table 3. This table shows that, fasisiorrected predictions, the POD in all three
cities is larger than for the non-corrected timeese especially in the case of moderate and kghtl
polluted conditions of ozone. Thus, the predictiafsair pollution events are significantly
improved when the bias correction is applied in ¢hse of ozone. Only for the predictions of
moderately polluted conditions of ozone, the PODnd¢ changing. The FAR is also slightly
decreasing for all cities, but the improvemennigH.

In Beijing, the POD air pollution events represeny a moderate AQI for 1-hour ozone increased
from 0.44 for Beijing (55 out of 126 observed e®@ritefore bias correction to 0.69 (87 out of 126
events) after bias correction. The False Alarm Ra#R) also increased from 0.05 (3 false alarms
out of these 58 events) to 0.10 (10 false alarmio©bA7 predicted events). Lightly polluted events
(1-hour ozone exceeding 200 p@)nhave been predicted correctly 31 times (14 timigsout the
corrections), while the observations exceeded hheshold 79 times. The FAR for lightly polluted
ozone events also slightly increased from 0.128uff 16) to 0.2 (8 false alarms out of 40).

For moderately polluted ozone events (1-hour ommeeding 300 pg 1), the POD for the bias-
corrected prediction is still 0. The model ensembites not able to predict the 4 observed events
(FAR is not applicable, (0 out of 0)).

Looking at the 8-hour ozone predictions for Beijittge POD of 0.45 (864 out of the 1921 observed
events have been predicted correctly) increaseédl e (1452 out of 1921) after bias corrections,
and the FAR from 0.06 (56 counts are false alartrob920) to 0.23 (424 false alarms out of 1876
predictions) for moderate ozone pollution. For tigipolluted ozone conditions, the POD increased
to 0.44 (291 out of 657) and FAR = 0.22 (81 falkaras of 372 predicted) for the bias corrected
predictions compared to POD = 0.18 (118 out of 6B3erved events) with a FAR = 0.06 (7 out of
125 are false alarm). For moderately polluted cioras, the model ensemble with bias corrected
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predicted 27 (instead of only 7) out of 150 obsdreeents correctly with a FAR of 0.28 (13 false
alarms of 47 predictions) compared to FAR of 022\t of 9 are false alarm).

For Shanghai, for moderate air quality conditiofi®zone, the POD increased from 0.16 to 0.51
(47 (15 for non-corrected) out of 92 observed eveme predicted correctly); the FAR increased
from O (no false alarm) to 0.10 (5 false alarms afub2) for 1-hour Ozone predictions. For 8-hour
ozone predictions, the POD increased from 0.21.66 (1554 (non-corrected: 488) out of 2346
observed events), the FAR increased from 0.0lalgefalarms of 495 predicted events) to 0.32
(726 false alarms of 2280 counts) for 8-hour oz@medictions. For lightly polluted ozone
conditions, the POD increased from 0.08 (3 corpeetlictions out of 38 observed) with FAR of 0
(no false alarm, 3 correct predictions) to POD 34Q(13 out of 38) with FAR = 0.07 (1 false alarm
of 14 predicted events) for 1-hour ozone, and fto8r ozone, the POD increased from 0.07 to
0.27 (109 (non-corrected: 27) out of 398 obsereaed) the FAR increased from 0.10 (3 false alarms
out of 30) to 0.13 (16 false alarms in 125 predicaents). For moderately polluted ozone
conditions, the POD for 1-hour ozone is not appliegor both non-corrected and bias-corrected
predictions (no predicted, no observed events)fdiuhe bias-corrected prediction, one false alarm
is observed (FAR = 1, 1 false alarm in 1 predictednt), and for 8-hour ozone POD increased
from 0 to 0.10 (3 (non-corrected: 0) predicted aiuthe 29 observed), the FAR decreased from 1 (2
false alarms out of 2 predicted, but not obserted).8 (12 false alarms of 15 predicted events).

In Guangzhou, the predictions are not as accuratén aBeijing and Shanghai, and the bias

corrections result only in slight improvementstoé bzone forecasts for Guangzhou. The POD of 1-
hour ozone in Guangzhou increased from 0.16 to (B®2non-corrected: 15) correct predictions

out of 94 observed) and the FAR slightly increafsedh 0.21 (4 false alarms out of 19 predicted) to

0.33 (15 false alarms out of 45 predicted evemtsjrfoderate conditions. For lightly polluted ozone

conditions, the POD increased from 0.03 to 0.1&h@ corrected: 1) predicted out of 36 observed)
and the FAR increased from 0 (0 out of 1 predicted).29 (2 false alarms of 7 predicted events).
For moderately polluted ozone predictions, the PEOD FAR did not change with bias corrections

(POD =0 (0 predicted out of 5 observed eventsRpat applicable).

For 8-hour ozone of moderate conditions, the PGibeimsed from 0.31 to 0.49 (508 (non-corrected:
315) correct predicted out of 1032 observed) ard#BR increased from 0.28 (122 false alarms of
437 predicted events) to 0.37 (296 false alarms8fBt predictions). For lightly polluted ozone
conditions the POD increased from 0.06 to 0.13 ((&h-corrected: 12) out of 217 observed) and
the FAR increased from 0 (no false alarm out opdg&tlicted events) to 0.19 (7 false alarms for 36
predicted events). For moderately polluted ozomalitmns, the POD and FAR did not change with
bias corrections (POD= 0 (0 out of 47 observed s)eRAR not applicable).

Figure 13 a—c shows the time series of the modstrable, the bias corrected time series of the
model ensemble and the observations. For the dakimum ozone, the bias correction results in a
better agreement with the observations, which egsalts in better event predictions. For 8-hour
ozone, there is better agreement during summertirniée during the wintertime, the bias-corrected
ozone time series are too high compared to theradisens (both correcting for the bias derived
from the total time series, or only from the sumtinge time series). This shows (as we have seen
in Section 3.1), that the bias is not the samendutie whole year, and also that the diurnal cgtle
ozone is not well captured by the model ensembleiléNthe bias corrected daily maximum ozone
is in better agreement with the observations, the@ bias corrected moving average is too high
during winter time (with very low ozone concentoai$). As the ozone is too low in winter to
exceed the lowest threshold (moderate conditioas)afr quality index calculations, this is not
affecting the quality of the event prediction. A masophisticated bias-correction (bias correction
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with diurnal and annual variation included) coule d&pplied to further improve the predictions,
provided that a longer time series (more than ozar pf data) is available. The statistical bias
correction can then be used for the improvemefutofe predictions.

6. Conclusions and Future Developments

In this paper, we evaluate the forecasting systemeldped and implemented as part of the EU
Panda and MarcoPolo projects after a little moam thne year of operation. The forecasting system
is based on an ensemble of seven state-of-théranistry-transport models (CHIMERE, EMEP,
IFS, LOTOS-EUROS, WRF-Chem-MPIM, WRF-Chem-SMS, SMi&gst). Each model is
executed on a computer platform hosted by indididostitutes in China and Europe. Input for
meteorological forcing, emissions and boundary @&@r have been carefully chosen and adopted
for the specific situation of China, but vary frarmodel to model. The forecasting system provides
every day hourly forecasts for 3 days ahead for feajor chemical pollutants €ONG,, PM10 and
PM2.5) together with hourly observational data jed by the Chinese observational network

(www.pm25.in).

The models, whose predictions are strongly infleeniby the adopted weather forecast, reproduce
in general the regional features and capture manpaddution events. In most cases, the model
ensemble reproduces satisfactorily the day-to-dajebility of the concentrations of the primary
and secondary air pollutants and in particulardiete the occurrence of pollution events a few days
before they occur. Overall, and in spite of sonszipancies, the air quality forecasting system is
well suited for the prediction of air pollution eus and has the ability to be used for alert waynin
(binary prediction) of the general public, spedifig if bias corrections are applied to improve the
ozone forecasts.

In most cases, the ensemble approach provides raccerate forecasts and reduces the
uncertainties in comparison with the individual ratsdresults. The calculation of the median of all
models is also relatively insensitive to model ien$, and is computationally efficient. Using the
ensemble median based on all models provides thtepleeformance for all species, as the relative
performance of any individual model may vary in ginspace and species. We showed, that the
ensemble product, even if occasionally based orfenodels, is more useful than a single model
of good quality, and that the ensemble productilisrebust compared to the observations if data
from some contributing models are occasionally mgss

Despite the fact that the prediction system istindevelopment phase and that the resources
available to improve the system are limited, therdd®olo and Panda forecasting system can be
viewed as already quite successful. The inter-coispa presented in the companion paper by
Brasseur et al., 2018nd the present evaluation were performed to dsgmlifferences between
models, identify problems and contribute to indiatl model improvements. Specifically, the
underestimation of ozone under high Nnditions and the resulting errors in the diualle of
ozone need to be addressed in an effort to imptteyenodel forecasts in China. Although major
efforts are ongoing to improve emission inventorfes China, the remaining uncertainties,
especially in regard to local emissions, may paettplain the differences between models and
observations. This is subject of further invesiiyat Furthermore, data assimilation of satellite an
in situ observations should significantly improbe performance of the forecasting system. Finally,
a more advanced approach to extract observatiansded by the Chinese network is expected to
improve the model-data comparison.

17



Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-234
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 1 October 2018

(© Author(s) 2018. CC BY 4.0 License.

784

785
786
787
788
789
790

791

792
793
794
795
796
797
798
799
800

Data Availability

The models described here are used operationallythby participating research and service
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801 Table 3 POD and FAR for Beijing, Shanghai and Guangzhou

Probability of Detection (POD) ‘False Alarm Rate (FAR)
Beijing IAQI 2 AQI 3 AQI 4 AQI 2 AQI 3 AQI 4
(moderate) (lightly poll.) (moderately poll.) (moderate) (lightly poll.) (moderately poll.)
1-hour O3 [ug m 3 0.44 0.18 0 0.05 0.12 NaN
(55/126) (14/79) (0/4) (3/58) (2/16) (0/0)
Bias corrected 1 -hour O; |0.69 0.41 (0] 0.10 0.20 NaN
[ug m (87/126) (32/79) (0/4) (10/97) (8/40) (0/0)
8-hour O [ugm ™ 0.45 0.18 0.05 0.06 0.06 0.22
(864/1921) (118/657) (7/150) (56/920) (7/125) (2/9)
Bias corrected 8 -hour O; (0.76 0.44 0.23 0.23 0.21 0.28
[ug m3 (1452/1921) (291/657) (34/150) (424/1876) (81/372) (13/47)
24-hour NO; [ug m 1 0.79 NaN 0.46 0.70 NaN
(214/214) (27/34) (0/0) 180/394) (63/90) (0/0)
1-hour NO, [ug m ™| 0.61 NaN NaN 0.80 NaN NaN
(36/59) (0/0) (0/0) (141/177) (0/0) (0/0)
24-hour PM2.5 [ug m ] 0.95 0.76 0.52 0.19 0.28 0.35
(268/283) (111/146) (33/64) (61/329) (43/154) (18/51)
Shanghai
1-hour O3 [ug m 3 0.16 0.08 NaN 0 (o] NaN
(15/92) (3/38) (0/0) (0/15) (0/3) (0/0)
Bias corrected 1 -hour O3 (0.51 0.34 NaN 0.10 0.07 1
[ug m (47/92) (13/38) (0/0) (5/52) (1/14) (1/1)
8-hour O [ugm ™ 0.21 0.07 0 0.01 0.10 1
(488/2346) (27(398) (0/29) (7/495) (3/30) (2/2)
Bias corrected 8 -hour O; (0.66 0.27 0.10 0.32 0.13 0.80
[ugm (1554/2346) (109/398) (3/29) (726/2280) (16/125) (12/15)
24-hour NO; [ug m 1 0.67 NaN 0.42 0.86 NaN
(208/208) (10/15) (0/0) (152/360) (60/70) (0/0)
1-hour NO, [ug m ] 0.91 NaN NaN 0.70 1 NaN
(48/53) (0/0) (0/0) (111/159) (1/1) (0/0)
24-hour PM2.5 [ug m ] 0.87 0.84 0.50 0.19 0.47 0.67
(191/220) (32/38) (3/6) (46/237) (28/60) (6/9)
Guangzhou
1-hour O3 [ug m™| 0.16 0.03 (0] 0.21 (0] NaN
(15/94) (1/36) (0/5) (4/19) (0/1) (0/0)
Bias corrected 1 -hour O3 (0.32 0.14 (0] 0.33 0.29 NaN
[ug m (30/94) (5/36) (0/5) (15/45) (2/7) (0/0)
8-hour O [ugm ™ 0.31 0.06 0 0.28 0 NaN
(315/1032) (12/217) (0/47) (122/437) (0/12) (0/0)
Bias corrected 8 -hour O; (0.49 0.13 (o] 0.37 0.19 NaN
[ugm (508/1032) (29/217) (0/47) (296/804) (7/36) (0/0)
24-hour NO; [ug m 0.94 0.56 NaN 0.35 0.68 NaN
(208/222) (15/27) (0/0) (110/318) (32/47) (0/0)
1-hour NO, [ug m ] 0.76 NaN NaN 0.63 1 NaN
(58/76) (0/0) (0/0) (97/155) (1/1) (0/0)
24-hour PM2.5 [ug m ] 0.85 0.57 NaN 0.30 0.80 NaN
(149/175) (417) (0/0) (65/214) (16/20) (0/0)
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803 Table 4 POD and FAR for PM2.5 for Beijing under heavilgllpted conditions.
804

Beijing AQI heavily POD FAR

polluted

24-hour PM2.5 [ug m3] |0.50 0.28

(18/36)  (7/25)
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1044 Figure 11: Timeseries of daily maximurg, @-hour moving averagez024-hour mean Ng& daily

1045 maximum N@and 24-hour mean PM2.5 for Shanghai from April@0mbtil June 2017.
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1091 Figure 12: Calculated (ensemble median) and obgktiveeseries of daily maximum,@-hour

1092 moving average §) 24-hour mean N§) daily maximum N@and 24-hour mean PM2.5 for

1093 Guangzhou from April 2016 until June 2017.
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1142 Figure 13 c: Timeseries of calculated (ensembleiamdnd observed daily maximum and 8-hour
1143 moving average §for Guangzhou together with the bias correctedalgted timeseries.
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